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Abstract
We investigate heterogeneity in the impact of early-life medical interventions on low-

risk newborns’ health. A policy rule in The Netherlands creates large discontinuities in
medical treatments at gestational week 37. Using a regression discontinuity design, we
find no health benefits from additional treatments for average newborns. However, there
is substantial heterogeneity in returns to treatments, with significant health benefits
for newborns in the lowest income quartile and no benefits in higher income quartiles.
We provide suggestive evidence that potential difficulties in risk screening among low-
income women cause this heterogeneity. “Back-of-the-envelope” calculations suggest
that providing additional treatments to all low-risk births as per the current policy rule
is barely efficient, but a targeted policy focusing on low-income areas would be highly
cost-effective.
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1 Introduction

It is a stylized fact that health care expenditures vary considerably throughout
the developed world, both across and within countries (Skinner, 2011). These
geographic variations in health care spending, however, are generally not as-
sociated with corresponding differences in health outcomes (e.g., Baicker and
Chandra, 2004; Fuchs, 2004; Stukel et al., 2005). This pattern is in stark con-
trast to the well-documented health benefits of a range of medical technologies,
broadly defined as pharmaceutical treatments, medical devices and procedures
(e.g., McClellan and Newhouse, 1997; Almond et al., 2010; Garthwaite and
Duggan, 2012; Daysal et al., 2015). Economists have recently emphasized the
role of treatment heterogeneity in reconciling these seemingly contradictory
findings. As the argument goes, cross-sectional studies identify the effects of
incremental spending, which may be very different than the impact of treat-
ments on the marginal patient. One particular dimension along which there
may be heterogeneity in the health benefits of treatments is socioeconomic
status because of potential differences in (unobserved) health characteristics,
health behaviors, and quality of care provided. This may lead to heterogeneity
in the optimal treatment approach as well as to heterogeneity in diagnostic
accuracy. In this paper, we investigate the heterogeneity by socioeconomic sta-
tus in the impact of early-life medical interventions on the short-term health
of low-risk newborns using a unique confidential dataset from the Netherlands.

Focusing on early-life medical interventions is important for several reasons.
First, spending for the very young increased substantially faster than spending
for the average individual. For example, during the period 1960–1990, per
capita spending in the US on infants under 1 year old increased by 9.8 percent
per year whereas annual spending on individuals aged 1 to 64 increased by
only 4.7 percent (Cutler and Meara, 1998). Second, it is widely accepted that
changes in medical technologies are the main driver of medical cost growth,
both in general and in the specific case of childbirth (Newhouse, 1992; Cutler
and Meara, 1998). Third, any gains from survival are much larger in the case of
newborns than for adults. Finally, understanding the heterogeneity in returns
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to medical interventions for low-risk births is especially important given the
current policy debates on shifting these births from more costly to less costly
childbirth technologies such as midwifery care and home births.

Empirical estimation of the returns to medical interventions is complicated
by selection issues. Even among observably low-risk women, those with worse
expected birth outcomes usually receive more (intensive) treatments, leading
to biased estimates in simple regressions. In order to eliminate this bias, we
exploit a policy rule in the Netherlands that provides exogenous variation in
the medical interventions administered to low-risk births. The Dutch system
is unique in its division between the primary care provided by midwives and
the secondary care provided by obstetricians (OB/GYN). Low-risk women,
i.e., women without known medical risk factors, start their pregnancy under
the supervision of a midwife and stay under the supervision of a midwife as
long as no risk factors appear. Their delivery is supervised by a midwife,
who is prohibited by law from performing any medical intervention. The
birth can take place either at home or in a hospital, and in both cases no
OB/GYN is present. However, if labor is premature (i.e., before 37 completed
gestational weeks), the woman should be referred to an obstetrician. In this
case, the OB/GYN supervises the delivery, which always takes place in a
hospital. Thus, the “week-37 rule” generates a discontinuity at 37 completed
gestational weeks in three important medical inputs: the medical professional
supervising the delivery (OB/GYN instead of midwife), the location of delivery
(hospital versus home), and all the medical treatments that physicians are
allowed to perform during and immediately after birth (e.g., use of forceps and
vacuum, administration of antibiotics). This motivates the use of a regression
discontinuity (RD) design.1

We start by investigating effects on the average low-risk newborn. We show
1It is worth noting that the rate of planned C-sections is generally very low in the

Netherlands and that planned C-sections do not occur among low-risk women. Only around
7 percent of all births are primary C-sections (i.e., planned before the start of delivery).
Most of these are for medical reasons and among women not classified as low-risk. Elective
C-sections for non-medical reasons are very rare and virtually non-existent around the 37-
week cutoff. As detailed later in the paper, all planned C-sections are excluded from our
analysis sample.
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that the week-37 rule generates substantial variation in all our measures of
medical technologies/inputs. For example, the probability that a spontaneous
low-risk birth is supervised by an obstetrician increases by 37 percentage points
below the 37-week threshold. Similarly, newborns slightly below the week-37
cutoff are 24 percentage points more likely be delivered in a hospital and 10
percentage points more likely to be admitted to a neonatal intensive care unit
(NICU). These estimates are economically large and correspond to increases of
36–88% when compared to the mean above the cutoff. Despite the substantial
variation in medical interventions, we do not find any significant differences in
newborn health outcomes (7-day and 28-day mortality and likelihood of a low
Apgar score) across the week-37 cutoff.

Average effects can mask significant variation in benefits across the popu-
lation (Bitler et al., 2006). Therefore, we next turn to heterogeneity in returns
to medical interventions. Given that previous literature documents large dif-
ferences in infant mortality across different socio-economic groups (Case et al.,
2002; Currie et al., 2007), we examine whether returns to medical interven-
tions vary by socio-economic status as proxied by the average income in the
postal code of residence of the mother.2 We find that the discontinuities in
medical interventions across the week-37 cutoff are similar across the income
distribution. However, there are significant differences in the effects of these
treatments on newborn health. Our results consistently indicate economically
large health gains to preterm newborns in the lowest income quartile. In con-
trast, we find no significant health differences between preterm and at-term
newborns in the other three income quartiles.3

There are several channels that may explain the heterogeneity in the re-
turns to childbirth technologies. It is possible that the week-37 rule changes
the quality of providers differentially across the income distribution because

2Postal codes in the Netherlands are much smaller than zip codes in the United States.
We use 4-digit postal codes, which on average have 4,075 inhabitants and a land surface of
8.5 square kilometers (3.28 square miles). We do not have information on individual income
or education.

3Alternative measures of socio-economic disadvantage, such as being first- or second-
generation immigrant, generally yield similar conclusions but with less precision due to
smaller sample sizes.
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of differences in the quality of care provided by either midwives or hospitals.
Unfortunately, our data do not allow us to explore this channel. Second, it is
possible that low-income newborns are exposed to additional treatments in a
timelier manner because their mothers tend to reside closer to a hospital. We
rule out this explanation because we find no evidence of residential sorting by
distance and income. Finally, treatment heterogeneity may arise if midwives
are less able to identify higher-risk mothers among lower-income individuals
(e.g., due to difficulties in communications about health-related issues or due
to unobserved health behaviors). If this is the case, some high-risk low-income
women may be classified as low-risk and their infants may benefit more from
the additional medical treatments provided due to the week-37 rule. We pro-
vide suggestive evidence on this channel by showing that average predicted
newborn health improves monotonically with income.

Our study fits broadly in the previous economics research on returns to
medical technologies. A large part of this literature investigates treatments
for adults, such as for heart attack (Cutler et al., 1998; Skinner et al., 2006)
or HIV/AIDS patients (Duggan and Evans, 2008). More recently, a grow-
ing number of papers examine returns to early-life medical interventions, with
a special focus on treatments for very low birth weight children. Increased
treatments for this group are generally shown to reduce mortality (Cutler and
Meara, 2000; Almond et al., 2010; Bharadwaj et al., 2013; Breining et al.,
2015). Research on the returns to medical interventions for low-risk infants
is limited with mixed results. While Almond and Doyle (2011) show that
longer hospital stays do not affect infant health outcomes after uncomplicated
deliveries, Miller (2006) finds that midwifery-promoting public policies were
associated with lower neonatal mortality.4 Particularly relevant to our study
is Daysal et al. (2015), who also use data from the Netherlands and an instru-
mental variables strategy to find that giving birth in a hospital (as opposed
to home) leads to reductions in the mortality of low-risk newborns. The au-

4Some medical research finds higher rates of adverse events such as a low Apgar score
or asphyxia in midwife-supervised as opposed to physician-supervised deliveries Wernham
et al. (2016), but no increases in infant mortality Wiegerinck et al. (2015). However, these
studies likely suffer from an omitted variable bias.
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thors provide suggestive evidence that proximity to other medical technologies,
such as neonatal intensive care units (NICU), may be an important channel
contributing to the health gains from a hospital birth.

Our paper is most closely related to an emerging literature, both in eco-
nomics and medical sciences, studying the heterogeneity in returns to medical
interventions (Kravitz et al., 2004; Chandra and Skinner, 2012). To the best
of our knowledge, the only paper to explicitly examine heterogeneity in the
returns to early-life medical interventions is Evans and Garthwaite (2012).
The authors use changes in minimum postpartum stay laws in California to
investigate the impact of postpartum length of stay on newborn health. Their
results point to modest reductions in the probability of readmission for the
average newborn, but also to substantial heterogeneity in the effects across
the distribution of medical need. In particular, the health gains are found to
be largest for infants with high a priori likelihood of longer stay.

Our paper makes several contributions. First, we exploit a new source of
variation in early-life medical interventions. To this end, we utilize a policy
rule in The Netherlands that affects children on the borderline of prematurity
(37 weeks of gestation). Focusing on this relatively understudied group of
children yields widely relevant findings because “[o]n a global level, given their
relatively larger numbers, babies born at 34 to 36 weeks are likely to have
the greatest public health impact and to be of the most importance in the
planning of services.” (March of Dimes et al., 2012, p. 30)

Second, our results suggest that ensuring access to medical interventions
may improve newborn outcomes even among low-risk women living in a de-
veloped country. The Netherlands is a country where maternity care is pro-
vided using a rigorous process of risk selection based on past medical history,
the current health status of the mother and the fetus, and their development
throughout pregnancy. Yet, even with a relatively sophisticated model of risk
selection, we find that the babies of some women classified as low-risk benefit
from the additional medical treatments provided by obstetricians in a hospi-
tal. These are women in the lowest income quartile, who are predicted to have
babies in poorer health, suggesting that risk selection is more difficult and less
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precise for women with lower socioeconomic status.
Finally, our results imply that crafting cost-effective health policies requires

a solid understanding of the potential sources of heterogeneity in treatment
effects. In our context, “back-of-the-envelope” calculations suggest that the
week-37 rule is barely efficient as currently applied to all low-risk births. How-
ever, a targeted policy focusing on low-income areas would turn it into a highly
cost-effective measure. Failing to account for this heterogeneity would result
either in waste in health care or even in the elimination of a program that saves
lives among the poor, potentially contributing to existing health disparities.
This is especially important in light of the growing emphasis on cost reduction
through increased use of physician extenders (Institute of Medicine, 2011).

2 The Dutch Obstetric System

Obstetric care in the Netherlands is guided by the principle that pregnancy
and delivery are natural processes that do not require attendance by a (spe-
cialized) physician as long as there are no deviations from the perfectly normal
course. The ability of midwives to fully provide care for uncomplicated preg-
nancies and deliveries was established as early as 1865 through the “Law of
Medical Practice” and upheld in subsequent legislation. These laws also pro-
hibit the use of any “obstetrical instruments” by midwives (Amelink-Verburg
and Buitendijk, 2010). However, a clear separation between the roles of mid-
wives and obstetricians was introduced only a century later. In 1958, with
the clear goal of reducing medical expenditures, the Dutch National Health
Insurance Board compiled a list of conditions that require a hospital admission
in the area of maternity care. This list introduced the division between the
primary care provided by midwives (or general practitioners in areas with no
midwife practices) and the secondary care provided by specialized physicians
such as obstetricians. It also set the foundation for risk selection, the princi-
ple that uncomplicated births should stay in primary care and that hospital
admissions are necessary only in case of deviations from the normal course
of pregnancy or labor. The list was updated over time and its use became
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explicit in 1973, when it was published as the “List of Obstetric Indications”
(LOI) in the Dutch Textbook of Obstetrics and Gynecology (Amelink-Verburg
and Buitendijk, 2010). Since then, the LOI is used to determine when referrals
are made from primary to secondary care.

Currently, the Dutch maternity care system functions as follows. Preg-
nancies start under supervision of a midwife as long as none of the conditions
described in the LOI are present. As long as no complications arise, mid-
wives supervise the entire pregnancy, perform all checks, and attend the birth
(Bais and Pel, 2006). If at least one condition in the LOI is found, then a
referral to secondary care needs to be made at that point and the rest of
the pregnancy and the birth is supervised by an OB/GYN. The LOI contains
four types of criteria that lead to a referral: non-gynecological pre-existing
conditions (e.g., diabetes, alcoholism or psychiatric disorders), gynecological
pre-existing conditions, obstetric anamnesis (C-section, very premature births
or severe complications during previous deliveries), and conditions arising or
first diagnosed during pregnancy such as hyperemesis gravidarum, infections,
plurality, gestational hypertension, or blood loss (CVZ, 2003). Referrals for
reasons not listed in the LOI are not allowed and physician fees are not covered
by insurance plans in such cases (CVZ, 2003). Finally, women are not allowed
to directly contact an obstetrician.

This risk selection system divides delivering women into two groups. High-
risk women are those referred to an OB/GYN at any point during pregnancy
(before the onset of labor). Their prenatal care is provided by obstetricians
from the moment of the referral and they are required to give birth in a hospital
under the supervision of an OB/GYN. Low-risk women are those who do not
have any LOI-listed conditions until the onset of labor. These women receive
their prenatal care entirely from midwives and they can choose between a
home and a hospital birth. In both cases, their deliveries are supervised by a
midwife with no obstetrician present unless a complication arises during labor
or during the delivery. The safety of this system is currently hotly debated
in The Netherlands among researchers, the general public, as well as policy
makers (Evers et al., 2010; Wiegerinck et al., 2015).
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Among both high- and low-risk women, special medical guidelines exist in
the case of prematurity, which is defined as the onset of labor before 37 com-
pleted gestational weeks from the last menstrual period. For example, many
hospitals in the Netherlands regularly admit preterm infants for observation,
and some hospitals administer antibiotics to women whose water breaks before
week 37 in order to reduce the risk of infection (Schakel and Bekhof, 2010). In
addition, in the case of low-risk women the LOI includes a rule (hereafter the
“week-37 rule”) requiring midwives to refer women whose labor starts or threat-
ens to start prematurely to an obstetrician. These births then have to take
place in a hospital under the supervision of the obstetrician, and both these
women and their newborns have access to all the treatments that obstetricians
can provide during and shortly after the birth.5

To summarize, the week-37 policy rule generates plausibly exogenous vari-
ation in the medical professional attending the birth of low-risk women. This
rule divides low-risk women into two groups, both of whom received their pre-
natal care from midwives: those delivering under the supervision of a midwife
with no obstetrician present, and those who deliver under the supervision of
an obstetrician. Given that obstetricians only deliver in hospitals, the rule also
induces variation in the location of delivery. Finally, because midwives cannot
perform any medical interventions, the week-37 rule also produces variation in
the medical treatments available during and immediately after birth.

3 Empirical Strategy

We are interested in the heterogenous impact of early-life medical interventions
on the health of low-risk newborns. To identify the effects, we exploit plausibly
exogenous variation in early-life medical interventions due to the “week-37 rule”
in a regression discontinuity (RD) design.

An RD design relies on the idea that if a policy requires a sharp and arbi-
5During obstetrician-supervised deliveries, there is also a midwife present, but this is a

different midwife from the one who supervised the prenatal care. He or she is employed
by the hospital (rather than by a midwifery practice) and is specialized in dealing with
higher-risk deliveries.
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trary cutoff for implementation and is based on a measure that is not perfectly
controlled by the targeted individuals, then random variation around the cut-
off will partly determine when the policy is implemented (Hahn et al., 2001;
Imbens and Lemieux, 2008; Lee and Lemieux, 2010). The week-37 cutoff pro-
vides an ideal case for an RD design. It is based on an arbitrary threshold in
the sense that there are no specific developmental changes that occur in the
fetus or in the mother between day 258 and day 259. Kramer et al. (2012,
p.111) note that “[i]nfants born before 20 weeks or at 37 or 38 weeks share
many features with births at 20–36 weeks, including etiological and prognostic
features,” and thus conclude that the choice for the upper (37 weeks) and lower
(20 or 22 weeks) bounds for defining a preterm birth are arbitrary. In addition,
there is no evidence that any intervention (including hydration, antibiotics, or
tocolytic therapy) can consistently delay delivery by more than 24–48 hours
after the onset of labor (Norwitz and Caughey, 2011). This suggests that, in
a sample of spontaneous births, expectant mothers cannot precisely manip-
ulate the timing of their birth so as to control their assignment to different
medical providers and treatments. As such, the variation in early-life medical
interventions around the week-37 cutoff should be as good as random.

Our empirical strategy is described by the following local-linear regression:

Yiat = f(a− 258) + βW37a + uiat, (1)

where the unit of observation is infant i born in year t at gestational age a, Yiat
is a measure of infant health or of medical treatments, W37a is an indicator
for prematurity (gestational age strictly below 37 completed weeks, or 259
days), and f(·) is a first-degree polynomial in normalized gestational age that
is allowed to vary on both sides of the discontinuity. The coefficient of interest
β captures the intention-to-treat effect of the week-37 rule: the change in low-
risk newborns’ outcomes and receipt of medical treatments as gestational age
moves from 259 days (exactly 37 completed weeks) to 258 days. Our baseline
regressions use a triangular kernel which places higher weights on observations
closer to the cutoff and we cluster the standard errors in all regressions at the
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gestational day level.
Estimation in an RD framework is conducted within a small interval around

the discontinuity. Larger bandwidths increase the degree of precision of the
estimates, but also increase the risk of bias. We use a rule-of-thumb approach
to select our bandwidth (Lee and Lemieux, 2010). For each health outcome
and treatment measure, the optimal rule-of-thumb bandwidth is given by:

hROT = k

[
Rσ̂2∑n

i=1(m̂
′′
i )

2

]1/5
,

where k is a parameter that depends on the kernel choice (3.438 for the tri-
angular kernel), R is the range of the running variable, n is the sample size,
and m̂′′(·) and σ̂ are the curvature and standard error of the regression of the
health outcome on a fourth-degree polynomial in normalized gestational age,
respectively. Appendix Table A1 lists the optimal bandwidths for our selected
outcomes. Our baseline regressions use a bandwidth of 14 days to the left and
right of the week-37 cutoff.

4 Data

We use data from the Perinatal Registry of the Netherlands (Perinatale Reg-
istratie Nederland, Perined) for the years 2000–2008. Perined is an annual
dataset covering approximately 99 percent of the primary care and 100 percent
of the secondary care provided during pregnancy and delivery in the Nether-
lands (de Jonge et al., 2009). It is constructed by linking individual birth
records submitted by midwifes (LVR-1), obstetricians/gynecologists (LVR-2)
and paediatricians (LNR).6

The data include detailed information on the birth process. For each deliv-
ery, we observe the date and time of birth, type of birth attendant (midwife or
OB/GYN), delivery location (home or hospital), method of delivery (vaginal,
planned C-section, emergency C-section), use of interventions during vaginal

6Perined data does not include information on births supervised by general practitioners,
a very small share of all primary care deliveries (Amelink-Verburg and Buitendijk, 2010).
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delivery (labor augmentation, induction, use of forceps or vacuum), as well
as the presence of complications during pregnancy or delivery. In the case of
complications, we can observe the date and the reason for referral from mid-
wife to an obstetrician. The data also provide rich background information
on newborns (gender, gestational age in days, birth weight, parity, plurality)
and basic demographic characteristics of mothers (age, ethnicity, 4-digit resi-
dential postal code). We complement the individual-level Perined data with a
secondary postal code-level data set from Statistics Netherlands (Kerncijfers
postcodegebieden 2004). These data provide a snapshot of average character-
istics in the postal code of residence of the mother as of January 1, 2004, such
as average monthly household income, average area density, and the share of
residents 0-15 years old.7

Our outcomes include a number of variables pertaining to medical interven-
tions administered during or soon after birth as well as measures of short-term
infant health. We start by examining the effect of the week-37 rule on medical
treatments during and after delivery: obstetrician supervision of birth, deliv-
ery in a hospital, use of forceps or vacuum, and admission to a NICU within
the first 7 days of life. We then examine effects on newborn short-term health
outcomes as measured by 7-day mortality, 28-day mortality, and low Apgar
score.8

A variable crucial to our identification strategy is gestational age. The
week-37 rule states that women should be referred to secondary care if the
onset of labor occurs before 37 completed gestational weeks. In our data, we
do not observe the date and time of the onset of labor. Hence, we define
the cutoff based on gestational age at birth, measured as the number of days
between the date of the last menstrual period and the date of birth.9

7Average area density is the average number of addresses per square kilometer in a circle
with a radius of 1 km around each address in the postal code.

8We do not have information on longer term mortality rates. Apgar is measured 5 minutes
after birth and summarizes the health of newborns based on five criteria: appearance (skin
color), pulse (heart rate), grimace response (“reflex irritability”), activity (muscle tone), and
respiration (breathing rate and effort). The score ranges from 0 to 10 with higher scores
indicating better health. Low Apgar score refers to an Apgar score below 7.

9Alternatively, we can define gestational age at the onset of labor as gestational age at
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Some of our robustness checks include additional covariates, which can
be classified into four groups. The first group (time effects) includes fixed
effects for the year, month and day of the week of the birth. The second
group (maternal characteristics) includes mother’s age and ethnicity.10 The
third group (infant characteristics) includes birth weight and indicators for
gender, congenital anomalies and birth position.11 The final group (postal
code characteristics) includes the average characteristics of the postal code
of residence of the mother: monthly household income, area density and the
fraction of residents 0–15 years old.12

Our analysis sample includes live deliveries by low-risk women with gesta-
tional age between 245 and 272 days. We focus on low-risk women because the
week-37 rule does not apply to high-risk women.13 This has the added benefit
that women in this category are homogenous in terms of their prenatal care.
As a result, we are able to identify the effects of early-life medical interventions
abstracting from the effects of prenatal care.

Low-risk women are defined as those under the care of a midwife at the
onset of labor, that is when contractions start spontaneously or when mem-
branes rupture spontaneously (Evers et al., 2010; van der Kooy et al., 2011).
Referrals under the week-37 rule can be made because of premature onset of

birth shifted by an “average duration of labor” in hours, because we can observe the exact
time of birth. Analyses using these alternative definitions (available upon request) yield
results almost identical to our baseline results.

10We include indicators for six maternal age categories (less than 20, 20–24, 25–29, 30–
34, 35–39, 40 and above) and three maternal ethnicity categories: Dutch, Mediterranean
and others (Moroccans and Turks, commonly identified as “Mediterraneans,” represent the
majority of the immigrant population in the Netherlands).

11Specifically, we include birth weight in grams and indicators for very low birth weight
(less than 1,500 grams), low birth weight (between 1,500 and 2,500 grams), gender, congen-
ital anomalies (mild and severe) and birth position (breech birth and other).

12Some of the control variables (newborn gender, birth weight, mother’s age, and postal
code characteristics) are missing for a very small number of observations (less than 0.03 per-
cent for individual characteristics and less than 0.8 percent for postal code characteristics).
We replace these missing values with sample averages and we include indicators for missing
values for each variable as additional controls.

13The week-37 rule affects three important medical inputs: the medical professional su-
pervising the birth, the location of delivery, and the medical treatments during and soon
after birth. Among high-risk women, there is no change in the first two inputs across the
prematurity cutoff and only a limited change in the third input.
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labor, but also because of the “threat of prematurity,” which midwives can
potentially assess before the actual onset of labor (e.g., due to cramping, in-
creased pressure in pelvis or vagina, or vaginal bleeding). If midwives have
a tendency to refer women in poorer health in these cases, then referral pat-
terns on each side of the threshold may be different and a comparison of births
right above and right below the threshold would be misleading. In order to
eliminate this potential bias, we define low-risk women as women who were
not referred to an obstetrician by gestational age of 238 days, 7 days before
the lower bound of our target interval.14 We also restrict our sample to first
births because future fertility may be endogenous to experiences in previous
deliveries (which we do not observe in the data). In addition, midwives and
women may use information from previous pregnancies to determine if and
potentially when referral to an obstetrician should be made.15 Finally, we ex-
clude multiple births, which are automatically referred to obstetricians, and
cases in which gestational age may be manipulated (planned C-sections, in-
duced and stimulated births). This results in an analysis sample of 85,246
women who are under the care of a midwife until at least gestational day 238,
and who give birth to their first child between gestational days 245 and 272.
When investigating the heterogeneity in returns to medical interventions, we
divide the sample into quartiles of the average monthly household income in
the postal code of residence of the mother.16

14We thank Gordon Dahl for this suggestion. The date of referral is missing for about 4.5
percent of our analysis sample. We exclude these observations from the main analyses and
we check the sensitivity of our results to their inclusion in section 5.4.

15Indeed, we find that parity is discontinuous across the week-37 cutoff among all low-risk
births: newborns below the cutoff are significantly more likely to be first-born relative to
those slightly above the cutoff. This holds both overall and across the income distribution
(results available upon request).

16Income quartiles are defined using the entire population of births. Appendix Table A2
details how the analysis sample is constructed.
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5 Results

5.1 Validity of the Regression Discontinuity Design

The validity of an RD design rests on the assumption that individuals do
not have precise control over the assignment variable. Since there are no
medical tests which can accurately predict prematurity and our analysis sample
consists of spontaneous births, the variation in receipt of medical interventions
near the week-37 cutoff should be as good as random. However, the key
identification assumption of the RD design could be violated if women (or
midwives) strategically misreport gestational age at birth.

In order to test this, we examine in Figure 1 the frequency of births within
our bandwidth. A discontinuity in the density of births around the week-37
cutoff would suggest manipulation of the running variable and thus invalidate
our RD design (McCrary, 2008). Not surprisingly, the number of births is
increasing in gestational age, with the vast majority of births occurring after
39–40 completed gestational weeks. However, visually, there is no significant
jump in the number of births between day 258, when the week-37 rule applies,
and day 259, when it does not. More formally, we estimate a local-linear re-
gression similar to equation (1), using the number of births at each gestational
age as the dependent variable. We indeed do not find evidence of a statistically
significant discontinuity in the number of births.17

Next, we check whether there are differences in observable characteristics
across the week-37 cutoff. If the RD design is valid, then the observable
characteristics should be locally balanced on both sides of the week-37 cutoff.
Figure 2 presents the means of selected covariates by gestational age before and
after the cutoff.18 The Figure shows that the distribution of the covariates is

17The estimated discontinuity at the cutoff is 139.493 (s.e. 239.298). Appendix Figure A1
plots the frequency of births by gestational age for each income quartile. The corresponding
results for the regression-based McCrary test for quartiles 1–4 are: 0.914 (s.e. 56.199),
31.946 (s.e. 62.696), 53.382 (s.e. 59.831), 53.252 (s.e. 68.971).

18For visual clarity, here and in the rest of the paper, we group the data in 4-day bins
starting from the cutoff. Appendix Figures A2–A5 plot the corresponding distributions by
income quartile.
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smooth around the discontinuity. In order to examine this issue more formally,
we also estimate in Table 1 local-linear regressions using the covariates as the
dependent variables. The results confirm the visual evidence in Figure 2:
observations just below the week-37 cutoff are similar to those just above the
week-37 cutoff in terms of the majority of maternal characteristics, newborn
characteristics, and average characteristics in the postal code of the residence
of the mother. It is worth noting that even in the few cases where we find
statistically significant differences, the difference in the magnitudes is very
small with no clear pattern. For example, infants born before day 259 are on
average 31 grams lighter than those born after the cutoff.19 On the other hand,
mothers of preterm infants reside in postal codes where the average monthly
household income is higher by e15.

When we split the sample by household income, we find some evidence that
preterm babies in the highest income quartile have worse observable character-
istics than at-term babies from the same quartile (a higher likelihood of severe
congenital anomalies and perhaps a higher likelihood of breech presentation).
However, we conduct a large number of tests so a few significant results may
be expected purely based on chance. The patterns otherwise generally follow
those in the full sample and indicate smooth distributions across the cutoff for
the majority of covariates. This lends support to the claim that the variation
in medical interventions near the week-37 cutoff is as good as random.

5.2 The Discontinuity in Medical Treatments

If the Dutch institutional rule governing the supervision of premature births
is binding, then we should observe a discontinuity in receipt of medical inter-
ventions at 37 completed gestational weeks. To examine this, in Figure 3 we
plot several medical treatments around the cutoff. Visually, there is a substan-

19The small statistically significant jump in birth weight is not surprising because birth
weight and gestational age are particularly related to each other. Almond et al. (2010)
exploit the variation in medical inputs across the very low birth weight threshold to esti-
mate the marginal returns to medical care and also find a statistically significant jump in
gestational age at the very low birth weight cutoff. Our estimated jump may be an artifact,
resulting from a slight nonlinearity in the relation between gestational age and birth weight.
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tial jump up at the week-37 cutoff for each of these medical treatments, with
newborns below the cutoff having higher rates of obstetrician supervision, hos-
pital births, NICU admissions and medical interventions during delivery (use
of forceps and vacuum).20

In the first column of Table 2, we examine whether the difference in receipt
of medical treatments below and above the week-37 cutoff is statistically sig-
nificant by estimating equation (1). Each cell reports the coefficient of W37

from a different regression. The results suggest that preterm newborns receive
significantly more medical interventions: they are, on average, 37 percentage
points more likely to be supervised by an obstetrician; 24 percentage points
more likely to be delivered in a hospital; 10 percentage points more likely to be
admitted to a NICU within the first seven days of life; and 3 percentage points
more likely to be delivered by use of forceps and vacuum. These estimates are
economically large and represent increases of 25–88% when compared to the
mean of the outcomes above the cutoff.

Appendix Figures A6–A9 and columns 2–5 of Table 2 show that the week-37
rule leads to discontinuities in receipt of medical treatments across the income
distribution. The estimated discontinuities are all statistically significant and
point to an income gradient whereby higher-income mothers experience some-
what larger relative increases in treatments at the cutoff. For example, preterm
newborns in the lowest income quartile are, on average, 8.43 percentage points
more likely to be admitted to a NICU, which represents a 75% increase at the
mean above the cutoff. Preterm newborns in the highest income quartile, on
the other hand, are 11.62 percentage points more likely to be admitted to a
NICU, a 119% increase at the mean above the cutoff. Similarly, the week-37
rule increases the probability of a hospital birth by 27% for preterm newborns

20There are two reasons why the probability of obstetrician supervision does not “jump”
from 1 to 0 when gestational age increases from just under to just over 37 weeks. First,
the week-37 rule is not perfectly enforced, meaning that not all the infants born before 37
completed gestational weeks are referred to an OB/GYN. Second, low-risk women can be
referred to an OB/GYN for reasons other than prematurity, including complications arising
during delivery, slow progression, or the need for pain relief medication. As a result, some
of the births with at least 37 completed gestational weeks are at least partially supervised
by OB/GYNs.
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in the lowest quartile and by 39% for preterm newborns in the highest income
quartile. Overall, the evidence suggests that the Dutch institutional setup
provides significant variation in receipt of medical treatments among low-risk
first-time mothers, regardless of income.

5.3 Short-Term Newborn Health

In this section we present our estimates of the effects of early-life medical
interventions on newborn health outcomes. Figure 4 plots the evolution of our
three measures of newborn health as a function of gestational age. The Figure
indicates a smooth evolution of all health measures across the week-37 cutoff,
suggesting no significant health differences between births slightly below and
slightly above the cutoff.

The first column of Table 3 presents the regression estimates corresponding
to the visual evidence from Figure 4. The results, although imprecise, confirm
that there are no significant health differences between preterm newborns and
those born after 37 completed gestational weeks. Since these coefficients repre-
sent an intention-to-treat effect of the week-37 rule, our estimates suggest that
this rule yields no significant health benefits for the average low-risk newborn
with gestational age close to 37 weeks.

The coefficient estimates in columns 2–5 of Table 3, however, suggest that
the average effects mask substantial heterogeneity in the returns to medical
interventions.21 In particular, we find that preterm newborns in the lowest
income quartile are significantly less likely to die and to have low Apgar scores
when compared to low-income newborns who are slightly above the week-37
cutoff. When thinking about the magnitudes of the effects, it is worth em-
phasizing that these estimates have relatively wide confidence intervals that
include much smaller but still economically important returns. For example,
the lower bounds of a 95-percent confidence interval indicate 0.19 fewer infant
deaths per 1,000 births for 28-day mortality and a 0.03 percentage point reduc-
tion in the probability of low Apgar score. In stark contrast to these findings,

21Appendix Figures A10–A13 provide the corresponding visual evidence.
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our results in columns 3–5 indicate no significant health differences between
higher-income preterm newborns relative to higher-income at-term newborns.
In all cases, we reject the equality of the estimates between the lowest-income
quartile and the other income quartiles.

5.4 Robustness Checks

We next investigate the robustness of our results to model specification. If the
key assumption in our RD design is satisfied (i.e., the variation in receipt of
medical interventions is as good as random around the week-37 cutoff), then
including additional covariates in our model should not change our conclusions.
In panel A of Table 4 we present estimates from a specification that includes
the full set of controls described in section 4. We again find statistically
significant health benefits for preterm babies in the lowest income quartile,
and no significant health differences between preterm and at-term newborns
in the other three quartiles. The magnitudes of the estimated effects are
very similar to the baseline results. Next, we turn to the possibility that our
results could be driven by heaping at the cutoff. In order to address this issue,
Barreca et al. (2016) suggest estimating “donut” regressions that exclude the
observations at the cutoff. The results, shown in Panel B of Table 4, support
our main conclusions: the week-37 rule leads to health gains among the poorest
quartile, but not among the other income quartiles. Panel C focuses on the
choice of kernel and reports results based on a rectangular kernel which places
equal weights on observations. Our results again point to health gains for
babies slightly below the week-37 cutoff in the lowest income quartile and no
benefits for preterm babies in the higher income quartiles. In Panels D and
E, we test the robustness of our results to different bandwidths using intervals
of 7 and 21 days on either side of the cutoff. The estimated effects are again
very similar to those obtained in the baseline model.

In Table 5, we examine the role of our sample selection criteria. Recall that
our analysis sample includes women under the supervision of a midwife at least
until gestational day 238. In Panels A and B, we change the sample to include
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women under the supervision of a midwife at least until gestational day 245
and 231, respectively. In both cases, we confirm our baseline results: preterm
newborns from the lowest income families gain substantially from the medical
treatments induced by the week-37 rule, but those in higher income quartiles
do not seem to have any significant benefit from these additional treatments.
In Panel C, we check the sensitivity of our findings to including observations
with missing referral dates and show that the results are very similar to our
baseline estimates. Finally Panel D checks the robustness of our results to
including planned C-sections. These deliveries are excluded from our analysis
sample to avoid a potential bias from manipulation of the running variable.
However, we may have a selection bias if some births ending in an unplanned
C-section are coded as planned and if this practice changes across the cutoff.
The results in Panel D suggest that this is unlikely to be the case.22

Table 6 investigates whether the health gains observed in the lowest income
quartile are driven by our specific characterization of the income distribution.
Using income terciles and quintiles, we confirm that only newborns from the
lowest income areas experience mortality reductions from the week-37 rule.
In addition, the magnitudes of the estimates generally increase as the income
bins become smaller. This supports the claim that the health benefits due to
the week-37 rule may be a decreasing function of income.

Finally, we check whether we observe similar reductions in adverse newborn
outcomes at other points in the distribution of gestational age. If the observed
gains in health in the lowest income quartile are indeed driven by the week-37
rule, then we should not observe systematic discontinuities in newborn health
outcomes at other potential cutoffs. We examine cutoffs from 35 completed
gestational weeks (245 days) to 41 completed gestational week (287 days),
keeping the bandwidth fixed at 14 days on either side of the cutoff. Figure 5
plots the estimated coefficients and the 95% confidence interval. While the
estimates are noisier at lower gestational ages due to small sample sizes, we find

22We have also checked the robustness of our results to excluding all referrals and focusing
only on women under the care of a midwife at the onset of labor and we confirmed higher
health gains for the lowest income quartile with generally no benefits for the other three
quartiles (results available upon request).
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that there is no other cutoff where all three measures of newborn health exhibit
statistically significant gains of a magnitude comparable to those observed at
the week-37 cutoff.

5.5 Potential Mechanisms

Our results consistently show that the overall impact of the week-37 rule hides
substantial heterogeneity in the effects by income, with significant health ben-
efits only to low-income mothers. There are several mechanisms that may ex-
plain this heterogeneity in the returns to early-life medical interventions. To
begin with, the week-37 rule may change the quality of providers differentially
across the income distribution. This may be because low-income mothers have
access to poorer quality midwife care or to better quality hospitals. Unfortu-
nately, data limitations prevent us from investigating this specific channel.

Second, if lower income mothers reside closer to the hospital, their new-
borns may be exposed to additional treatments in a timelier manner and there-
fore profit more from such treatments. The average distances to the closest
hospital listed in the last row of Panel C in Table 1 show no consistent pat-
tern for such residential sorting by income. In addition, the point estimates in
Column 2 indicate that, if anything, low-income mothers with preterm babies
actually reside farther away from a hospital. As such, this scenario is unlikely
to drive our results.

Finally, the current risk selection system may be better suited to screen
for risks among higher income women. For example, communications about
health-related issues between midwives and low-income (and thus lower edu-
cated) pregnant women may be more difficult. Alternatively, some low-income
mothers may engage in unhealthy behaviors that are not included as reasons
for referral to an obstetrician in the List of Obstetric Indications. In this case,
the pool of low-income mothers classified as low-risk may have on average
worse unobserved underlying health than the higher-income mothers classified
as low-risk (in other words, some high-risk low-income women may be incor-
rectly classified as low-risk). These low-income women and their infants may
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experience higher benefits from the additional medical treatments provided
due to the week-37 rule.

There is some anecdotal evidence suggesting that this channel may be
important. A survey by the Royal Dutch Organisation of Midwives reports
that midwives needed on average 23 percent extra time when caring for low-
income women (Buisman and Gerats, 2008). The need for extra time was due
to difficulties in collecting relevant (medical) data, additional education on
prevention, lifestyles and risk, more frequent home visits, and consultations
to exclude uncertainties. In order to shed some light on this scenario, we
calculate average predicted newborn health by income quartile. We find that
all our measures of predicted newborn health improve monotonically as income
increases, suggesting that risk selection may indeed be an important factor
explaining the heterogeneity in returns to medical interventions by income.23

5.6 Cost of a Life Saved

In order to gauge the economic significance of our findings, we conduct a “back-
of-the-envelope” calculation of the cost of a life saved due to the week-37 rule
using deliveries within our bandwidth. Table A3 details the calculations. Our
results indicate that the week-37 rule increases the number of obstetrician-
supervised hospital deliveries by 345–390 per 1,000 births. Of these, roughly
191–265 represent transfers from midwife-supervised home births to OB/GYN-
supervised hospital births, while the rest are transfers from midwife-supervised
hospital births. In 2016, the cost of a midwife-supervised home birth was
e519.60, whereas a midwife-supervised hospital birth had an additional cost
of e589.80 (NZA, 2015). On the other hand, the average cost of an uncom-
plicated hospital delivery under the care of an obstetrician was e2,250 (NZA,
2016). Hence, our results imply a cost increase of e561,914 per 1,000 births

23Predictions are based on a regression model including all the observable characteristics.
Average predicted 7-day mortality rates, from the first to the fourth income quartile, are:
2.285, 2.198, 2.091, 2.058. The corresponding numbers for predicted 28-day mortality are:
2.503, 2.393, 2.280, 2.235. Finally, the predicted fractions of newborns with low Apgar score
are: 1.272, 1.186, 1.123, 1.094.
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due to higher use of OB/GYN-supervised hospital births because of the week-
37 rule.

Our estimates also suggest that prematurity leads to 13–43 more deliveries
aided by use of forceps/vacuum. According to 2016 prices, use of forceps and
vacuums increases the mean cost of a hospital delivery by e465 (NZA, 2016),
adding e14,751 per 1,000 births. Turning to NICU admissions, we find that
there are 84–119 more NICU admissions within the first week of life due to
the week-37 rule. Our best estimate for the cost of a NICU stay, based on
the same price listed by several hospitals and insurers, is e9,151.79.24 This
implies that the week-37 rule is associated with an additional cost of e918,403
per 1,000 births.

Overall, the estimated additional cost of the week-37 rule per 1,000 deliver-
ies is roughly e1.5 million. Compared to an average reduction of 0.721–0.812
deaths per 1,000 births, the implied cost per life saved is e1.8–2.1 million.25

Previous studies calculate the value of a statistical life in the Netherlands to
be e2.6 million in 2009 prices (SWOV, 2012), which amounts to e2.83 mil-
lion in 2015 prices. Taken together, these results suggest that the current
implementation of the week-37 rule is borderline cost-effective. However, if
the rule applied only to the lowest-income quartile, the estimated cost of a
life saved would lie between e0.39–0.44 million. In this case, the treatments
omitted from our calculation would need cost at least five times as much as
those included in order to make the policy inefficient.

24This estimate is based on the average length of stay in the NICU and the average length
of stay in post-IC high care for babies born between weeks 34–40 (Perined, 2015).

25On the one hand, these numbers represent an underestimate of the true cost of the
week-37 rule because we are unable to include the costs of all treatments that increase at the
cutoff. The NICU costs are underestimated because they do not include additional NICU-
related costs such as transportation, certain treatments such as extracorporeal life support,
or post-NICU follow-up care that does not require a hospital admission. Furthermore, some
costs (e.g., additional checks after birth complications) could not be included. On the other
hand, these calculations do not incorporate all benefits since the week-37 rule may not only
reduce mortality, but also reduce the prevalence of conditions such as perinatal asphyxia
(oxygen deprivation) which can lead to permanent brain damage and consequent additional
treatments and loss of human capital.
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6 Conclusions

In this paper, we examine the impact of early-life medical interventions on the
health outcomes of low-risk newborns. In order to address the endogeneity in
receipt of medical interventions, we exploit the exogenous variation generated
by a policy rule in the Netherlands. The policy rule requires that low-risk
women give birth under the supervision of a midwife unless the birth occurs
before 37 completed gestational weeks, generating variation in the medical
professional supervising the birth. Given that obstetricians only deliver in
hospitals and that midwives cannot perform any medical interventions, the
week-37 rule also induces variation in the location of delivery and in the med-
ical treatments administered during and immediately after birth.

Using data from the Netherlands for the period 2000–2008, we find that
the week-37 rule leads to statistically and economically significant increases
in all our measures of early-life medical treatments. Despite the substantial
variation in medical inputs, our results indicate that average newborn health
outcomes are similar across the week-37 cutoff. However, the average effects
mask substantial heterogeneity in the returns to medical interventions along
the income distribution. Our results indicate that preterm newborns in the
lowest income quartile are significantly less likely to die and to have low Ap-
gar scores when compared to low-income newborns who are slightly above the
week-37 cutoff. The heterogeneity in the returns to early-life medical interven-
tions may be caused by various channels. While we are not able to investigate
some interesting pathways, we provide evidence suggesting that potential dif-
ficulties in risk screening could be an important factor.

Our results are relevant to the ongoing policy debates on effective health
policy. The fact that medical interventions improve the health outcomes of
some newborns even among low-risk women living in a developed country
with a long history of risk selection suggests that even relatively sophisticated
models of risk selection may fail to identify all high-risk individuals. This
cautions against designing “one-size-fits-all” policies and indicates that a good
understanding of the causes of treatment heterogeneity should go hand in hand
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with crafting policies about child birth technologies.
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Figure 1: Frequency of births around the week-37 cutoff
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Table 1: Covariates around the week-37 cutoff

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

A. Maternal characteristics
Age 0.116∗ 0.060 0.208 0.033 −0.001

(0.061) (0.123) (0.137) (0.105) (0.092)
Mean outcome 28.354 26.843 28.135 28.701 29.787
Observations 85,246 21,259 22,050 21,137 20,800

Ethnicity: Dutch 0.007 0.009 −0.000 0.005 0.003
(0.006) (0.006) (0.020) (0.007) (0.011)

Mean outcome 0.817 0.697 0.832 0.874 0.865
Observations 385,246 21,259 22,050 21,137 20,800

Ethnicity: Mediterranean 0.004 0.010 0.007 0.005 −0.000
(0.004) (0.006) (0.012) (0.004) (0.003)

Mean outcome 0.063 0.129 0.057 0.036 0.028
Observations 85,246 21,259 22,050 21,137 20,800

B. Newborn characteristics
Male −0.009 −0.018 −0.003 −0.035∗∗ 0.022∗

(0.007) (0.018) (0.014) (0.015) (0.012)
Mean outcome 0.542 0.537 0.541 0.548 0.543
Observations 85,246 21,259 22,050 21,137 20,800

Birth weight −31.133∗∗∗ −32.556∗∗∗ −18.524∗ −38.960∗∗∗ −38.719∗∗∗

(5.613) (7.987) (9.170) (8.668) (13.315)
Mean outcome 3148.143 3113.914 3142.691 3161.847 3175.258
Observations 85,246 21,259 22,050 21,137 20,800

Mild congenital anomaly 0.001 −0.001 0.004 0.000 −0.001
(0.001) (0.002) (0.004) (0.002) (0.003)

Mean outcome 0.006 0.006 0.005 0.006 0.006
Observations 85,246 21,259 22,050 21,137 20,800

Severe congenital anomaly 0.002 −0.003 −0.002 0.003 0.011∗∗∗

(0.003) (0.004) (0.002) (0.004) (0.004)
Mean outcome 0.009 0.010 0.010 0.008 0.008
Observations 85,246 21,259 22,050 21,137 20,800

Breech birth 0.006 −0.006 0.008 0.008 0.011∗

(0.006) (0.008) (0.011) (0.007) (0.007)
Mean outcome 0.045 0.039 0.046 0.046 0.048
Observations 85,246 21,259 22,050 21,137 20,800
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Table 1: Covariates around the week-37 cutoff (cont’d)

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

C. Residential characteristics
Average household income 15.291∗∗∗ 9.324∗∗∗ −0.967 2.541∗∗ 10.240

(2.789) (2.483) (1.182) (1.073) (6.233)
Mean outcome 1, 967.265 1, 637.355 1, 849.366 2, 021.428 2, 376.055
Observations 85,246 21,259 22,050 21,137 20,800

Average density −14.339 −101.004∗ 79.416 −53.342 49.458
(24.758) (49.305) (81.366) (62.854) (58.361)

Mean outcome 1, 894.099 2, 300.358 1, 771.135 1, 564.385 1, 938.739
Observations 85,246 21,259 22,050 21,137 20,800

% 0-15 year-old −0.032 0.053 −0.148 0.171∗ −0.364
(0.073) (0.076) (0.104) (0.093) (0.215)

Mean outcome 18.824 17.718 18.099 19.039 20.509
Observations 85,246 21,259 22,050 21,137 20,800

Distance to nearest hospital 0.055 0.426∗∗ −0.216 −0.104 0.105∗

(0.061) (0.188) (0.225) (0.094) (0.057)
Mean outcome 4.836 4.135 5.740 5.312 4.128
Observations 84,856 21,259 22,050 20,747 20,800

Notes: Each cell reports the estimated coefficient of W37 (an indicator for prematurity) from a
different regression. The dependent variable is listed in the row heading and the sample in the
column heading. All specifications are local linear regressions using a triangular kernel and include
a dummy indicating a preterm delivery and a first-degree polynomial in normalized gestational age,
allowed to vary on each side of the cutoff. Samples restricted to observations with gestational age
within a 14-day bandwidth around day 259. Mean outcome refers to observations to the right of
the cutoff. Robust standard errors clustered at the gestational day level. * p < 0.10, ** p < 0.05,
*** p < 0.01
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Table 2: Medical treatments around the week-37 cutoff

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

Obstetrician supervision 36.908∗∗∗ 34.452∗∗∗ 36.949∗∗∗ 39.086∗∗∗ 37.036∗∗∗

(3.093) (2.986) (3.129) (3.526) (3.352)
Mean outcome 45.053 45.788 44.857 44.645 44.916
Observations 85,246 21,259 22,050 21,137 20,800

Hospital birth 23.912∗∗∗ 19.101∗∗∗ 24.664∗∗∗ 26.571∗∗∗ 25.509∗∗∗

(2.157) (1.456) (2.763) (3.232) (2.110)
Mean outcome 65.975 71.395 64.679 62.831 64.944
Observations 85,246 21,259 22,050 21,137 20,800

NICU admission 10.048∗∗∗ 8.425∗∗∗ 8.355∗∗∗ 11.851∗∗∗ 11.617∗∗∗

(0.984) (2.080) (1.254) (0.843) (1.743)
Mean outcome 11.371 11.201 12.501 11.928 9.791
Observations 85,246 21,259 22,050 21,137 20,800

Use of forceps or vacuum 3.245∗∗∗ 1.313 3.666∗∗∗ 3.455 4.262∗∗

(1.056) (1.024) (0.740) (2.383) (1.755)
Mean outcome 13.104 12.152 12.693 13.380 14.238
Observations 85,131 21,230 22,022 21,104 20,775

Notes: Each cell reports the estimated coefficient of W37 (an indicator for prematurity) from a
different regression. The dependent variable is listed in the row heading and the sample in the
column heading. All treatment variables measure the percentage of births receiving that treatment.
All specifications are local linear regressions using a triangular kernel and include a first-degree
polynomial in normalized gestational age, allowed to vary on each side of the cutoff. Samples
restricted to observations with gestational age within a 14-day bandwidth around day 259. Mean
outcome refers to observations to the right of the cutoff. Robust standard errors clustered at the
gestational day level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 3: Newborn health around the week-37 cutoff

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

7-day mortality 0.530 −3.257∗∗∗ 3.929 0.849 0.330
(0.359) (0.716) (3.013) (1.410) (1.501)

Mean outcome 1.518 1.696 1.315 1.328 1.740
Observations 85,246 21,259 22,050 21,137 20,800

28-day mortality 0.900 −2.891∗∗ 4.638 0.742 0.823
(0.787) (1.380) (3.686) (1.383) (0.815)

Mean outcome 1.702 1.866 1.425 1.501 2.030
Observations 85,246 21,259 22,050 21,137 20,800

Low Apgar score −0.246∗ −0.549∗ 0.110 0.202 −0.770∗∗

(0.134) (0.267) (0.427) (0.282) (0.309)
Mean outcome 0.919 1.161 0.824 0.827 0.866
Observations 85,102 21,224 22,008 21,101 20,769

Notes: See notes in Table 2.
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Table 4: Sensitivity to model specification

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

A. Including controls
7-day mortality 0.432 −3.322∗∗∗ 3.969 0.851 −0.159

(0.293) (0.767) (2.859) (1.362) (1.562)
Mean outcome 1.518 1.696 1.315 1.328 1.740
Observations 85,246 21,259 22,050 21,137 20,800
28-day mortality 0.786 −2.929∗ 4.702 0.733 0.296

(0.672) (1.474) (3.532) (1.330) (0.936)
Mean outcome 1.702 1.866 1.425 1.501 2.030
Observations 85,246 21,259 22,050 21,137 20,800
Low Apgar score −0.242 −0.542∗ 0.157 0.179 −0.886∗∗

(0.146) (0.264) (0.449) (0.284) (0.328)
Mean outcome 0.919 1.161 0.824 0.827 0.866
Observations 85,102 21,224 22,008 21,101 20,769
B. Donut regressions
7-day mortality 0.517 −3.571∗∗∗ 4.463 0.301 0.576

(0.396) (0.693) (3.020) (1.399) (1.600)
Mean outcome 1.496 1.696 1.245 1.373 1.680
Observations 82,944 20,677 21,470 20,568 20,229
28-day mortality 0.789 −3.271∗∗ 5.141 0.149 0.803

(0.811) (1.346) (3.697) (1.343) (0.935)
Mean outcome 1.686 1.871 1.358 1.552 1.980
Observations 82,944 20,677 21,470 20,568 20,229
Low Apgar score −0.209 −0.665∗∗ 0.218 0.091 −0.500∗

(0.160) (0.266) (0.427) (0.296) (0.292)
Mean outcome 0.903 1.159 0.805 0.831 0.817
Observations 82,801 20,642 21,429 20,532 20,198
C. Rectangular kernel
7-day mortality 0.491 −3.940∗∗ 3.443 0.790 1.449

(0.561) (1.792) (2.463) (1.214) (1.385)
Mean outcome 1.487 1.614 1.240 1.346 1.760
Observations 96,666 24,150 24,919 24,007 23,590
28-day mortality 0.570 −4.241∗ 3.436 0.918 1.947∗

(0.848) (2.376) (2.964) (1.167) (0.983)
Mean outcome 1.659 1.760 1.336 1.495 2.061
Observations 96,666 24,150 24,919 24,007 23,590
Low Apgar score −0.182 −0.872∗∗ −0.047 0.447 −0.259

(0.132) (0.364) (0.397) (0.321) (0.317)
Mean outcome 0.890 1.073 0.798 0.849 0.841
Observations 96,504 24,107 24,872 23,970 23,555
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Table 4: Sensitivity to model specification (cont’d)

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

D. 7-day bandwidth
7-day mortality 0.893∗∗ −3.601∗∗∗ 3.133 3.543∗∗∗ 0.155

(0.393) (1.086) (4.022) (1.100) (1.938)
Mean outcome 2.086 2.194 2.149 1.319 2.688
Observations 30,576 7,618 7,883 7,644 7,431
28-day mortality 1.937∗ −1.513 4.095 3.189∗∗ 1.671∗∗

(0.910) (1.584) (4.958) (1.265) (0.751)
Mean outcome 2.365 2.377 2.328 1.507 3.264
Observations 30,576 7,618 7,883 7,644 7,431
Low Apgar score −0.588∗∗∗ −0.293 −0.545 −0.198 −1.313∗∗∗

(0.108) (0.294) (0.437) (0.338) (0.332)
Mean outcome 1.114 1.317 0.969 0.944 1.230
Observations 30,530 7,610 7,868 7,630 7,422
E. 21-day bandwidth
7-day mortality 0.290 −3.304∗∗∗ 3.656 0.179 0.429

(0.415) (0.952) (2.411) (1.350) (1.311)
Mean outcome 1.250 1.369 1.096 1.186 1.356
Observations 188081 46,675 48,343 46,719 46,344
28-day mortality 0.528 −3.322∗∗ 3.994 0.216 1.034

(0.740) (1.423) (2.933) (1.294) (0.800)
Mean outcome 1.374 1.534 1.165 1.281 1.522
Observations 188081 46,675 48,343 46,719 46,344
Low Apgar score −0.121 −0.738∗∗ 0.264 0.281 −0.307

(0.129) (0.274) (0.377) (0.264) (0.271)
Mean outcome 0.878 1.036 0.803 0.855 0.819
Observations 187777 46,585 48,271 46,650 46,271

Notes: See notes in Table 2.
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Table 5: Robustness to the definition of analysis sample

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

A. Under the supervision of a midwife at least until gestational day 245
7-day mortality 0.723∗∗ −3.126∗∗∗ 4.093 1.100 0.571

(0.341) (0.635) (3.072) (1.405) (1.528)
Mean outcome 1.505 1.717 1.273 1.341 1.697
Observations 83,902 20,886 21,721 20,782 20,513

28-day mortality 1.095 −2.762∗∗ 4.823 0.979 1.072
(0.781) (1.323) (3.764) (1.393) (0.779)

Mean outcome 1.691 1.889 1.384 1.516 1.989
Observations 83,902 20,886 21,721 20,782 20,513

Low Apgar score −0.191 −0.490∗ 0.214 0.216 −0.724∗∗

(0.141) (0.252) (0.453) (0.284) (0.304)
Mean outcome 0.917 1.169 0.821 0.812 0.867
Observations 83,760 20,851 21,681 20,746 20,482

B. Under the supervision of a midwife at least until gestational day 231
7-day mortality 0.614∗ −3.211∗∗∗ 3.908 1.192 0.311

(0.338) (0.705) (2.972) (1.345) (1.478)
Mean outcome 1.522 1.685 1.307 1.319 1.787
Observations 85,991 21,455 22,255 21,317 20,964

28-day mortality 0.981 −2.851∗∗ 4.608 1.090 0.803
(0.752) (1.355) (3.635) (1.322) (0.811)

Mean outcome 1.705 1.854 1.416 1.491 2.076
Observations 85,991 21,455 22,255 21,317 20,964

Low Apgar score −0.254 −0.624∗∗ 0.020 0.217 −0.645∗

(0.149) (0.293) (0.458) (0.301) (0.333)
Mean outcome 0.922 1.165 0.835 0.822 0.866
Observations 85,847 21,420 22,213 21,281 20,933

40



Table 5: Robustness to the definition of analysis sample (cont’d)

All Quartile of average household income
in postal code

First Second Third Fourth
(1) (2) (3) (4) (5)

C. Including spontaneous natural births with unknown referral date
7-day mortality 0.739∗ −2.746∗∗ 4.635∗ 0.536 0.282

(0.410) (1.236) (2.378) (1.440) (1.461)
Mean outcome 1.548 1.672 1.421 1.387 1.714
Observations 89,065 22,289 22,954 21,982 21,840
28-day mortality 0.900 −2.400 4.868 0.130 0.739

(0.712) (2.040) (3.102) (1.573) (0.772)
Mean outcome 1.751 1.834 1.579 1.609 1.990
Observations 89,065 22,289 22,954 21,982 21,840
Low Apgar score −0.284∗∗ −0.681∗∗ 0.230 0.128 −0.837∗∗

(0.135) (0.288) (0.343) (0.292) (0.308)
Mean outcome 0.936 1.151 0.860 0.844 0.886
Observations 88,916 22,251 22,911 21,946 21,808
D. Including C-sections
7-day mortality −0.025 −4.073∗∗∗ 4.340 −0.633 −0.040

(0.480) (0.643) (3.245) (1.124) (1.390)
Mean outcome 1.608 1.800 1.505 1.446 1.688
Observations 106,576 26,384 27,669 26,494 26,029
28-day mortality 0.248 −4.044∗∗∗ 4.866 −0.693 0.547

(0.772) (1.428) (3.774) (1.113) (0.875)
Mean outcome 1.798 2.070 1.591 1.626 1.916
Observations 106,576 26,384 27,669 26,494 26,029
Low apgar score −0.264∗∗ −0.313 0.019 −0.016 −0.768∗∗

(0.125) (0.299) (0.537) (0.318) (0.358)
Mean outcome 0.997 1.176 0.914 0.910 0.991
Observations 106,576 26,341 27,618 26,449 25,995

Notes: See notes in Table 2.
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Figure A1: Frequency of births around the week-37 cutoff, by income quartile
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Figure A2: Distribution of selected covariates around the week-37 cutoff, first income
quartile
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Figure A3: Distribution of selected covariates around the week-37 cutoff, second income
quartile
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Figure A4: Distribution of selected covariates around the week-37 cutoff, third income
quartile
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Figure A5: Distribution of selected covariates around the week-37 cutoff, fourth income
quartile
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Figure A6: Medical treatments around the week-37 cutoff, first income quartile
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Figure A7: Medical treatments around the week-37 cutoff, second income quartile
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Figure A8: Medical treatments around the week-37 cutoff, third income quartile
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Figure A9: Medical treatments around the week-37 cutoff, fourth income quartile
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Figure A10: Newborn health around the week-37 cutoff, first income quartile
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Figure A11: Newborn health around the week-37 cutoff, second income quartile
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Figure A12: Newborn health around the week-37 cutoff, third income quartile
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Figure A13: Newborn health around the week-37 cutoff, fourth income quartile
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Table A1: Optimal bandwidth, gestational age in days

All Quartile of average household
income in postal code

First Second Third Fourth

A. Health outcomes
7-day mortality 15.23 16.02 17.88 15.72 13.71
28-day mortality 14.88 18.34 18.27 12.86 14.60
Low apgar score 16.83 19.18 20.58 21.45 16.70

B. Treatments
Obstetrician supervision 7.89 10.08 10.50 10.43 10.53
Hospital birth 9.56 12.74 12.44 12.47 12.59
NICU admission 9.85 13.10 11.77 13.64 13.56
Use of forceps or vacuum 15.75 17.52 22.32 19.29 20.00

Notes: Each cell provides the calculated optimal bandwidth corresponding to the outcome in the
row and the sample in the column heading. The optimal bandwidths are calculated using a rule-of-
thumb approach. See section 3 for details.
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Table A2: Sample construction

Observations

Initial sample (universe of births) 1,630,062
Stillbirths -9,263
Missing information on birth attendant -3,377
Missing referral date -48,189
Planned C-section -107,162
Induced/stimulated birth -233,400

Live spontaneous births 1,228,671
High-risk births -282,134
Referral prior to gestational day 238 -46,937
Multiple births -420
Birth occurred outside bandwidth (245–272 gestational days) -737,347

Low-risk births 161,833
Higher-order birth -76,587

Low-risk first-births (analysis sample) 85,246
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