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Abstract: We investigate the effects of early-life medical treatments on the treated children and 

their families. We use a regression discontinuity design that exploits changes in medical treatments 

across the very low birth weight (VLBW) cutoff. Using administrative data from Denmark, we 

establish that VLBW children have better health and higher test scores. We find that these benefits 

spill over to other family members: mothers enjoy better mental health and siblings have higher 

test scores. Maternal mental health improvements seem to be driven by better focal child health, 

and sibling spillovers by improved interactions within the family and parental compensating 

behavior. 
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1. Introduction 

An extensive body of research in economics suggests that early-life conditions have long-lasting 

impacts on individual well-being, including health, educational attainment and labor market 

outcomes (Almond and Currie, 2011; Almond et al., 2018). Growing evidence also indicates that 

disabled children affect the socio-economic outcomes of other family members, such as parental 

labor supply (Gunnsteinsson and Steingrimsdottir, 2019; Deshpande, 2016; Powers, 2003), health 

(Burton et al., 2008), and marital stability (Kvist et al., 2013), or sibling academic achievement 

(Black et al. 2017). A natural question then is whether – and by how much – interventions that 

improve child health also affect these spillovers in the family. In this paper, we address this 

question by investigating the spillover effects of early-life medical treatments on the socio-

economic outcomes of other family members, focusing on the specific case of treatments provided 

to very low birth weight (VLBW) children, i.e., children with birth weight below 1,500 grams.  

Medical interventions targeting VLBW children constitute an ideal setting to study spillover 

effects for several reasons. To begin with, they have been found to substantially improve the health 

(e.g., Cutler and Meara, 1998; Almond et al., 2010; Bharadwaj et al., 2013) as well as the academic 

achievement (e.g., Bharadwaj et al., 2013) of treated children. Second, although VLBW children 

represent a small share of all births, they account for a substantial portion of newborn health care 

expenditures. For example, VLBW babies in the US represent around 1.5% of all births but the 

neonatal intensive care unit costs associated with these babies alone account for 30% of all 

newborn health care costs (Johnson et al., 2013). Finally, focusing on treatments provided to 

VLBW children allows us to overcome identification challenges arising from potentially correlated 

unobservables within the family, such as shared genetic factors that affect both the receipt of 

medical treatments by targeted children and the outcomes of other family members. Specifically, 

we use a regression discontinuity design that exploits changes in medical treatments across the 

very low birth weight threshold to address the non-random assignment of medical treatments 

(Almond et al., 2010; Bharadwaj et al., 2013). We restrict our analysis to the families of focal 

children (defined as the children with birth weight in a small window around 1,500 grams) with 

gestational age above 32 weeks because the medical guidelines prescribe additional medical 

treatments to children with gestational age below 32 weeks regardless of their birth weight. 
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Using population-level data from Denmark, we first replicate the finding in the previous literature 

that VLBW children are significantly less likely to die within the first year of life relative to 

newborns with slightly higher birth weight. We also confirm the finding that these children have 

higher math and language test scores in 9th grade. Our estimates are remarkably comparable in 

magnitude to the reductions in infant mortality and improvements in test scores from the previous 

studies using data from the United States, Chile and Norway (Almond et al., 2010; Bharadwaj et 

al., 2013). We add to these studies by expanding the outcome set to include a range of common 

childhood disabilities (intellectual disability, attention deficit hyperactivity disorder, behavioral 

and emotional disorders, cerebral palsy, and epilepsy) as well as by investigating effects on 

hospital and emergency room (ER) visits up to 15 years after birth. Our findings suggest that 

children slightly below the 1,500-gram threshold have the same likelihood of a childhood disability 

by age 10 as compared to children slightly above the threshold. While there is no impact on child 

disability, the medical treatments provided to VLBW children seem to result in better health during 

school years as proxied by reduced hospital and ER contacts.  

We next turn to investigating the spillover effects of early-life medical treatments on other family 

members. We examine the effects on siblings’ health (hospital and ER contacts) and academic 

achievement (9th grade math and language test scores, enrollment beyond compulsory education). 

For parents, we focus on labor market outcomes (employment status, number of days worked), 

annual gross income, and mental health as proxied by antidepressant use. Where possible, we 

present the short-term effects (1-5 years after the birth of the focal child) separately from the long-

term effects (6-15 years after the birth of the focal child). We try to address the potential multiple 

inference issues resulting from the large number of outcomes we study in two ways. First, we 

create indices summarizing the relevant variables in each outcome domain and time horizon, 

standardized at the level of the birth cohort of the focal child. Second, we adjust the p-values to 

take into account the multiple inference problem using a procedure proposed by Anderson (2008). 

Our results suggest that early-life medical interventions have no impact on parental behavior that 

affects total household resources: we do not observe discontinuous changes across the VLBW 

cutoff in parental labor force participation or income, either in the short-run or in the long-run. 

This is perhaps not surprising given that Denmark has one of the most generous social safety nets 

in the world, including 52 weeks of parental leave, generous cash payments to families with 

children, heavily subsidized childcare, and free and universal health care. Our results instead 
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suggest that early-life medical interventions may improve intra-household interactions. In 

particular, we find that the mothers of VLBW focal children are significantly less likely to use 

antidepressants soon after the focal child is born and that these mental health gains diminish as the 

focal child ages. We provide evidence suggesting that both focal child survival and improved focal 

child health are important drivers of these mental health gains. 

Our results also suggest that early-life medical treatments have substantial positive spillovers on 

sibling test scores. We find that the siblings of VLBW newborns have 9th grade test scores that are 

on average 0.375 standard deviations higher. Our results further highlight that test scores gains are 

observed across skill domains: language and math test scores are higher by 0.386 and 0.255 

standard deviations, respectively. These results are economically large, corresponding to a 

reduction of 33-69% in the test score gap between the children in the top and bottom 10% of the 

income distribution. We show that these sibling spillovers are unlikely to be driven by correlated 

health shocks within the family that would result in siblings’ exposure to early-life medical 

treatments themselves, or by differential focal child survival at the cutoff. Instead, our evidence 

points to improved intra-family interactions as a potential channel behind the sibling spillovers. 

Finally, we provide indirect evidence on the role of parental reallocation of resources within the 

family. If the production of human capital exhibits dynamic complementarities, then parental 

investments have higher returns for children with high initial endowment than for children with 

low initial endowment. If parents engage in compensating behavior, then our results suggest that 

the siblings of VLBW focal children should receive more parental resources than the siblings of 

focal children with birth weight slightly above 1,500 grams. We find that the siblings of VLBW 

focal children experience higher test score gains if they have high initial endowments themselves 

(as proxied by their birth weight), a pattern consistent with compensating behavior by their parents, 

especially in the presence of dynamic complementarities in human capital accumulation. 

Our paper makes three contributions. First, we add to the studies that document spillover effects 

of child health. The majority of this research examines the effects of having a disabled child on 

parental outcomes, such as labor supply (Gunnsteinsson and Steingrimsdottir, 2019; Deshpande, 

2016; Powers, 2003) and health (Burton et al., 2008). One notable exception is Black et al. (2017), 

who investigate spillovers to siblings and find that the second child in a family has worse test 
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scores when the third child is disabled.1 Our paper documents that improvements in child health 

that do not operate through child disability status may still result in significant sibling spillovers.  

Second, we contribute to the economic literature on the returns to early-life medical interventions. 

These studies almost exclusively investigate the effects on treated children (e.g., Cutler and Meara, 

1998; Chay et al., 2009; Field et al., 2009; Almond et al., 2010; Bharadwaj et al., 2013; Daysal et 

al., 2015; Hjort et al., 2017; Bütikofer et al., 2019; Daysal et al., 2019).2 The main insight that 

emerges from our work is that medical treatments may have far-reaching effects on family well-

being through spillovers even in developed countries with generous welfare systems.  

Third, our results speak to the economic literature that relies on sibling fixed effects models to 

account for unobserved heterogeneity across households in estimating the effects of various 

exposures. To the extent that siblings have spillovers on each other, sibling fixed effects models 

would not estimate the true treatment effects.  

Our results are also pertinent to the ongoing discussions about the cost effectiveness of early-life 

medical treatments. During the past few decades, medical spending for the very young increased 

substantially faster than spending for the average individual. For example, US annual spending on 

individuals aged 1 to 64 increased by 4.7 percent between 1960-1990, while per capita spending 

on infants under 1 year old increased by 9.8 percent per year (Cutler and Meara, 1998). 

Technological innovations are widely considered the main driver of this medical cost growth, both 

in general and in the specific case of early-life treatments (Newhouse, 1992; Cutler and Meara, 

1998). As medical expenditures keep increasing, understanding the benefits of early-life medical 

interventions becomes even more important. Our finding that medical treatments for VLBW 

children have positive externalities on other family members indicates that conventional 

calculations understate the net benefits of these treatments.  

  

 
1 There is also evidence on sibling spillovers more generally. For example, Dahl et al. (2014) show that take-up of 
family friendly policies affects siblings’ subsequent use of these policies, Joensen and Nielsen (2018) and Nicoletti 
and Rabe (2019) find that siblings’ education choices and test scores causally affect younger siblings’ academic 
outcomes, and Altonji et al. (2017) and Heissel (forthcoming) document that older siblings’ risky behavior impact 
younger siblings’ outcomes.  
2 One exception is Adhvaryu and Nyshadham (2016), who examine the effects of a large-scale iodine supplementation 
program in Tanzania on parents’ investments in children and find that the siblings of treated children were more likely 
to be immunized. 
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2. Institutional Background 

The majority of Danish health care services, including birth related procedures, are free of charge 

and all residents have equal access (Danish Ministry of Health and Prevention, 2008). The first 

European neonatal intensive care unit was established in 1965 at Rigshospitalet in Denmark and 

the use of early-life medical technologies has since followed the international development 

(Mathiasen et al., 2008). Danish neonatal medicine textbooks pay particular attention to VLBW 

children (i.e., children weighing less than 1,500 grams, regardless of gestational age) and very 

premature newborns (i.e., those with a gestational age less than 32 weeks, regardless of birth 

weight). These birth weight and gestational age classifications are frequently found in medical 

research papers based on Danish data where the focus is often on their higher mortality rates (e.g., 

Thomsen et al., 1991; Hertz et al., 1994). Medical handbooks suggest courses of treatment based 

on either birth weight or gestational age (Schiøtz and Skovby, 2001). Specific recommendations 

in terms of nutrition and vitamin supplements exist for VLBW children (Peitersen and Arrøe, 

1991). In addition, papers indicate that children below 1,500 grams or born before 32 weeks of 

gestation are more likely to receive additional treatments such as cranial ultrasound (Greisen et al., 

1986), antibiotics (Topp et al., 2001), prophylactic treatment with nasal continuous positive airway 

pressure, prophylactic surfactant treatment and high priority of breast feeding, and use of the 

kangaroo method (Jacobsen et al., 1993; Verder et al., 1994; Verder, 2007; Mathiasen et al., 2008). 

Anecdotal evidence from hospital and regional specific notes also outline special services that are 

provided to families with children below 1,500 grams or below 32 weeks of gestational age. These 

services include referrals to a physiotherapist who guides and instructs parents on how to stimulate 

the development of the child and on various baby exercises. It is also mentioned that all children 

below 1,500 grams or below 32 weeks of gestational age are routinely checked 1-2 months after 

discharge and again when they are five months, one year and two years old.3 

3. Empirical Strategy 

Identification of the (spillover) effects of early-life health interventions is complicated by the non-

random assignment of medical treatments. In particular, there may be unobserved determinants of 

the outcomes of other family members that are correlated with the receipt of medical treatments 

 
3 Unfortunately, our data does not include any information on specific early-life treatments. 
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by targeted children, such as shared genetic factors. In order to address this endogeneity, we follow 

Almond et al. (2010) and Bharadwaj et al. (2013) and use a regression discontinuity design that 

exploits changes in medical treatments across the VLBW threshold. Specifically, we estimate: 

 𝑦!"# = 𝑓$𝑏𝑤" − 1500+ + 𝛽𝑉𝐿𝐵𝑊" + 𝛿𝑋!"# + 𝜖!"# (1) 

where 𝑦!"# is an outcome of family member 𝑖 of focal child 𝑗 at time 𝑡 after the birth of the focal 

child, 𝑏𝑤" is the birth weight of focal child 𝑗, 𝑓(∙) is a first-degree polynomial in distance to the 

VLBW cutoff that is allowed to differ on both sides of the cutoff, 𝑉𝐿𝐵𝑊" is an indicator for focal 

child 𝑗 having very low birth weight (i.e., 𝑏𝑤" 	< 	1500), and 𝑋!"# is a vector of covariates.4  

We start our analysis by replicating and extending the findings in the previous literature on the 

impact of medical technologies on focal children themselves, i.e., we set 𝑖 = 𝑗 in Equation (1). We 

then turn to effects on other family members. The parameter of interest, 𝛽, is an intention-to-treat 

estimate of the effects that additional medical treatments received by VLBW newborns may have 

on themselves and on their families. 

Our baseline regressions use a triangular kernel that assigns decreasing weights to observations 

farther away from the cutoff. We choose our bandwidth based on a rule-of-thumb procedure 

suggested by Calonico et al. (2014), which yields optimal bandwidths between 118 grams and 251 

grams with an average of 189 grams (see Appendix Table A2). We choose 200 grams as our 

preferred bandwidth to ensure that newborns on either side of the VLBW cutoff are nearly 

identical. This bandwidth is the same as the one used by Bharadwaj et al. (2013) for Norwegian 

data and reflects the relatively small number of observations available in Denmark and Norway. 

The vector of covariates, 𝑋!"#, includes indicators for heaping at multiples of 50 grams in all 

specifications unless mentioned otherwise (Barreca et al., 2011).5 Some of our robustness checks 

additionally control for child and family characteristics (see Section 4 below). 

We are interested in exploring a variety of outcomes across multiple domains for several family 

members. This gives rise to a multiple inference problem: we may estimate statistically significant 

 
4 An alternative strategy would rely on the 32-week cutoff for gestational age. This strategy is infeasible with our data 
because gestational age is recorded in full weeks. 
5 Given that birth weight is measured in grams, heaping is generally symmetric around our cutoff point and hence our 
strategy is less likely to be affected by the criticism raised by Barreca et al. (2011). Indeed, we show in Section 5.3 
that our results are robust to the exclusion of these controls. 
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effects of the VLBW status on some outcomes simply by chance. We address this issue in two 

ways following the recommendations of Anderson (2008). First, we create indices for each family 

member and each domain (see Section 4 below and Appendix Table A1 for details). While this 

procedure helps with reducing the dimensionality, we are still left with a relatively large number 

of indices. Hence, as a second step, we adjust the p-values to take into account the multiple 

inference problem based on a procedure proposed by Anderson (2008).6 

Finally, we construct robust confidence intervals following Calonico et al. (2014, 2019). These 

confidence intervals are centered on bias-corrected estimates instead of the usual (conventional) 

estimates and use the standard errors from a specification with a higher-order polynomial in the 

running variable, which in our case is a second-degree polynomial. Therefore, in addition to the 

coefficient estimates and their robust standard errors, we also report the bias-corrected estimates 

that are used to construct these robust confidence intervals.  

4. Data 

Our key data set is the Birth Register, which includes information about the universe of births in 

Denmark starting from 1970. For each child, the data includes information on the exact date of 

birth, gender, and plurality. Birth weight is recorded in 250-gram intervals between 1973-1978, in 

10-gram intervals in the period 1979-1990, and at the gram level since 1991. Gestational age is 

added beginning in 1982. Using parental identifiers, we are able to link children to their parents 

and siblings and determine parity. We also link this data to other register data that provide 

information on both parents and children regarding demographic characteristics, labor market 

outcomes, health outcomes, and academic achievement.  

We first use data on focal children to investigate whether early-life medical interventions impact 

focal child health and academic achievement. Our mortality index includes two previously studied 

short-term outcomes, 28-day and 1-year mortality. In addition, we construct two health indices. 

Our short-term health index uses indicators for being hospitalized during each year between the 

ages of 1-5, while our long-term health index uses separate indicators for being hospitalized and 

 
6 The false discovery rate (FDR) is the average fraction of true null hypotheses among the rejected hypotheses, and 
the q-value is the level of the FDR desired by the researcher (Benjamini and Hochberg, 1995; Benjamini et al., 2006). 
We report the lowest q-value, i.e., the lowest sharpened FDR, at which an estimated effect is still significant (see 
Anderson, 2008, for details). This is conceptually similar to a p-value in that it represents the probability of a type-I 
error. 
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for having an ER visit during each year between the ages of 6-15. Given the previous medical 

literature linking very low birth weight to child developmental disabilities (Schieve et al., 2016), 

we also construct a disability index based on separate indicators for being diagnosed by age 10 

with one of the following conditions: intellectual disability, attention deficit hyperactivity disorder, 

behavioral and emotional disorders, cerebral palsy, and epilepsy. Our first measure of human 

capital accumulation is a test-score index based on course-specific test scores from 9th grade 

qualifying exams in reading and math, available between 2001 and 2010.7 Finally, we create an 

index of enrollment beyond compulsory education (9 years during our sample period) using 

indicators for enrollment in high school or vocational school at age 18, enrollment in an academic 

track at age 18, enrollment in higher education at age 24, and enrollment in a university at age 24. 

We then turn to spillover effects on the family. The outcomes for siblings mirror the outcomes for 

focal children with the exception of mortality and disability diagnosis. In particular, we create a 

short-term health index using indicators for being hospitalized during each year when the focal 

child is 1-5 years old, and a long-term health index using indicators for being hospitalized or 

having an ER visit during each year when the focal child is 6-15 years old. We construct a test-

score index based on 9th grade math and language test scores and an index of enrollment beyond 

compulsory education based on sibling’s enrollment in (higher) education at ages 18 and 24.  

For parents, we focus on mental health and labor market outcomes, separately for mothers and 

fathers. Our two mental health indices are based on indicators for having filled at least one 

antidepressant prescription during each year when the focal child is 2-5 and 6-15 years old.8 For 

labor market outcomes, we study effects on employment and income. We create two employment 

indices for each parent based on the number of days worked as well as indicators for being 

employed in each calendar year when the focal child is 1-5 and 6-15 years old. We similarly create 

income indices based on the log real annual gross income over the same range of focal child age. 

We construct each index in two steps. We first standardize each variable by the birth cohort of the 

focal child such that it has a mean of zero and a standard deviation of one. Next, we take the 

average of the standardized variables that make up the index and, because some of these variables 

are correlated, we re-standardize the index at the level of the birth cohort of the focal child. 

 
7 All exams are graded by the teacher and by an external examiner, who can overrule the teacher. 
8 The prescription drug register begins recording data from 1995 so we can only construct measures of antidepressant 
use starting from focal child age two.  
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Appendix Table A1 lists each variable included in the construction of each index. We provide 

results using selected outcomes or alternative aggregation strategies in Appendix Tables A6-A8. 

Some of our checks use focal child characteristics (gestational age, indicators for gender, parity, 

plurality, birth year, and birth region), maternal characteristics at the birth of the focal child (age, 

years of education, indicators for marital status and immigrant status), and sibling characteristics 

(gestational age, birth weight, and indicators for gender, parity, plurality, and birth year).9 

We define the analysis sample in several steps (see Appendix Table A3). First, we select focal 

children born between 1982 and 1993.10 We then exclude observations for which either birth 

weight or gestational age are missing and restrict the sample to those with birth weight within 

1,300-1,700 grams. Given that we are particularly interested in sibling spillovers, we further 

restrict the sample to the 3,677 focal children with siblings.11 As discussed in Section 2, newborns 

with a gestational age of less than 32 weeks are always covered by the medical guidelines for 

receiving additional medical interventions, irrespective of their VLBW classification. Since there 

is no discontinuity in eligibility for medical treatments (Bharadwaj et al., 2013), we do not expect 

to observe a discontinuity in focal child outcomes or in the outcomes of their family members. 

Therefore, we use the 1,521 focal children with gestational age below 32 weeks and their families 

only in a falsification check, and from here on we focus exclusively on the 2,156 focal children 

with gestational age of at least 32 weeks (hereafter the FC sample) and their families. 

Parents are identified from the birth register. Our data includes parental identifiers for all the 

mothers. If the mother is married to a man at the time of birth, authorities automatically register 

the husband as the biological father. When the mother is unmarried, the biological father needs to 

claim paternity of the child. Parental identifiers for the fathers are missing for only 40 of the focal 

children in the FC sample. Thus, the parent sample virtually overlaps with the FC sample. 

 
9 Maternal education is missing for 315 observations corresponding to 154 mothers. We replace these with the median 
number of years of education by birth cohort and include an indicator for imputed maternal education. Our results 
(available upon request) are robust to excluding these observations or the indicator for missing mother’s education.  
10 Our sample includes focal children born after 1982, when both birth weight and gestational age are recorded. We 
include cohorts born before 1994 for two reasons. First, this allows us to study human capital accumulation 
information for all cohorts, which makes it possible to compare the effects of early-life health interventions on the 
focal children in our context to those in previous studies. Second, evidence suggests that medical guidelines around 
the VLBW cutoff are less likely to be binding in recent years (see, for example, footnote 20 in Bharadwaj et al., 2013).  
11 The results for the sample including the 922 focal children who have no siblings born within our sample period are 
quantitatively and qualitatively similar (available upon request). 
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Siblings are defined as children born to the same mother from different pregnancies. We include 

both older and younger siblings because the receipt of additional medical treatments around the 

VLBW cutoff does not seem to impact future fertility decisions.12 We focus on siblings who are 

old enough for us to observe their academic outcomes. Tests are administered when children are 

around 15-16 years old, so data on test scores are available for cohorts of siblings born between 

1986-1997. Enrollment outcomes are measured at ages 18 and 24 and include siblings born 

between 1970-1993. The resulting sample includes 3,311 siblings of focal children with gestational 

age of at least 32 weeks (the sibling sample).13 

5. Results 

5.1. Tests of the Validity of the Regression Discontinuity Design  

The validity of an RD design rests on the assumption that individuals do not have precise control 

over the assignment variable. Since women cannot precisely predict the birth weight of their 

children, the variation in birth weight near the VLBW cutoff is plausibly as good as random 

(Almond et al., 2010; Bharadwaj et al., 2013). The key identification assumption of the RD design 

could be violated if physicians systematically misreport birth weight, especially in the presence of 

financial incentives for manipulation (Shigeoka and Fushimi, 2014; Jürges and Köberlein, 2015). 

In order to test this assumption, we examine the frequency of births by birth weight within our 

bandwidth around the cutoff. Appendix Figure A1 plots the distribution of observations in the 

FC/parent sample and in the sibling sample by birth weight of the focal child. We use 10-gram 

 
12 A focal child may have more than one sibling. We treat each sibling-focal child pair as an independent observation. 
This is not a concern for our identification because parity and total family size are relatively smooth across the cutoff 
in the FC sample. In addition, we find no evidence of a discontinuity at the cutoff when we examine the probability 
of having a younger sibling, the number of younger siblings, and the birth spacing between focal children and younger 
siblings (see Table 1). Finally, our results are qualitatively similar when we cluster the standard errors at the mother 
level in order to correct for the bias in standard errors caused by the potential correlation in the error terms between 
pairs of siblings from the same household (available upon request). 
13 Test scores are missing for approximately 20% of the eligible cohorts in the sibling sample. This is because children 
can be exempted from taking the test if, for example, they have a documented disability. This could be a concern if 
medical treatments provided to focal children impact the test-taking of siblings. We find no discontinuity at the cutoff 
in the probability that a sibling takes the language test (estimate 0.029, bias-corrected estimate b.c.e. 0.051, s.e. 0.070, 
mean 0.808) or the math test (estimate 0.048, b.c.e. 0.069, s.e. 0.068, mean 0.804), or in the age when they take the 
test (estimate -0.139, b.c.e. -0.106, s.e. 0.120, mean 16.035). Enrollment information is available for all eligible 
cohorts. 
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bins because birth weight is reported in 10-gram intervals for most of our sample period.14 Similar 

to previous studies (Almond et al., 2010; Bharadwaj et al., 2013), we observe reporting heaps at 

multiples of 50 and 100 grams but there is no evidence of irregular heaping around the VLBW 

cutoff. We check this more formally by estimating a local-linear regression similar to our baseline 

model, using the number of births in each birth weight bin as the dependent variable (McCrary, 

2008). We do not find any evidence of a discontinuity in the frequency of births at the VLBW 

cutoff.15 These results suggest that birth weight is unlikely to be manipulated in our context. 

In the remainder of this section, we check if there are differences in observable characteristics 

across the VLBW cutoff by estimating our baseline model with the covariates as dependent 

variables. If the RD design is valid, then there should be no discontinuities at the VLBW cutoff.16 

Table 1 provides the results. Panels A, C and D use the FC/parent sample and check whether focal 

child and parental characteristics are balanced, while Panels B uses the sibling sample to check for 

discontinuities in the covariates of siblings. Column 1 provides the conventional point estimate 

from the local-linear regression. Columns 2 and 3 present the bias-corrected estimate and the 

robust standard error (Calonico et al., 2019). We report sharpened q-values, i.e., p-values based on 

the numbers in Columns 2 and 3 further corrected for multiple inference, in Column 4 (see section 

3 and Anderson, 2008, for details). Finally, Column 5 reports the mean of the covariate in the 

sample of (family members of) focal children with birth weight of at least 1,500g. The results show 

that observations just below the VLBW cutoff are generally similar to those just above the VLBW 

cutoff. There are few characteristics with marginally significant discontinuities at the threshold 

and none of these survive the adjustment for multiple inference: the lowest q-value is 0.5.  

Overall, the analyses in this section indicate that there is no evidence of manipulation of the 

running variable around the VLBW cutoff or of discontinuities in the observable characteristics of 

focal children, their parents and their siblings.  

 
14  Some degree of rounded running variables is common across studies relying on regression discontinuity designs; a 
prominent example is to use age in quarters (e.g., Card et al., 2008) or years (e.g., Oreopoulos, 2006). While rounding 
can, of course, cause discretization bias (Dong, 2015), we believe this is a minor issue in our case with access to 
relatively fine-grained data.    
15 The estimates corresponding to Appendix Figures A1(a)-(b) are 0.092 (b.c.e. -7.507, standard error s.e. 6.955) and 
0.196 (b.c.e. -12.614, s.e. 17.429). The results are qualitatively similar when using the logarithm of the number of 
births as the dependent variable instead. In this case, the estimated coefficients are 0.013 (b.c.e. -0.223, s.e. 0.188) and 
0.027 (b.c.e. -0.238, s.e. 0.324). 
16 Visual evidence on selected covariates is provided in Appendix Figures A2-A4.  
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5.2. Baseline Results 

Figure 1 provides visual evidence on the relationship between birth weight and the outcomes of 

focal children. Figures 1(a)-1(d) focus on child health, while Figures 1(e)-(f) focus on academic 

achievement. The Figure shows that focal children with birth weight slightly lower than 1,500 

grams have lower mortality than children who weigh slightly more than 1,500 grams. Conditional 

on survival, however, the short-term health of children seems to be similar across the VLBW 

cutoff. We also do not observe any discontinuity in the disability index in Figure 1(d) but there is 

some indication of improved long-term health during primary school-age years from the index 

based on hospital admissions and ER visits in Figure 1(c). Turning to academic achievement, 

Figure 1(e) shows that focal children with birth weight slightly lower than 1,500 grams have visibly 

higher test scores in 9th grade. The improved test scores, however, do not seem to result in higher 

enrollment beyond compulsory education (Figure 1(f)).  

Column 1 in Tables 2 and 3 presents the corresponding regression results from our baseline model. 

Each cell reports the estimated coefficient of the VLBW variable from a separate local-linear 

regression with a triangular kernel of the summary index. Bias-corrected estimates are listed in 

square brackets, robust standard errors in brackets, and sharpened q-values in curly braces. We 

also report the mean of the outcome for observations above the cutoff. Consistent with the 

graphical evidence, we find that VLBW newborns have lower mortality in the short-run and lower 

hospital and ER visits in the long run: mortality is 0.508 standard deviations lower (Table 2) and 

hospitalizations and ER visits during school years are 0.324 standard deviations lower (Table 3).17 

We also find that focal children just below the VLBW cutoff have on average 0.314 standard 

deviations higher test scores in the 9th grade but they are not significantly more likely to be enrolled 

beyond compulsory education.  

We next turn to spillover effects on the siblings. Figure 2 provides visual evidence while the 

corresponding regression results are presented in Column 2 of Tables 2 and 3. Figure 2 shows that 

the siblings of focal children with birth weight slightly lower than 1,500 grams have visibly higher 

test scores in 9th grade. On the other hand, there is no evidence of important spillovers on health 

or enrollment outcomes. The regression results confirm that the early-life medical treatments 

 
17 As an example, the 95% robust confidence interval for the mortality effect (-0.508) is constructed using the bias-
corrected estimate and the robust standard error as: -1.011 ± 0.408 * 1.96 = [-1.811, -0.211]. 
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offered to VLBW children have significant positive spillovers on the test scores of the siblings 

without gains in higher education or health outcomes. In particular, we find that siblings of VLBW 

newborns have 9th grade test scores that are on average 0.375 standard deviations higher.18  

Finally, in Figures 3-4 and in the remaining columns of Tables 2-3 we examine potential spillovers 

to parental outcomes. Figure 3 suggests that the mothers of VLBW newborns have potentially 

better mental health, as proxied by reduced antidepressant use, than the mothers of heavier babies.  

On the other hand, there are no apparent discontinuities in maternal labor market outcomes or 

income, and surely not immediately after the birth of the focal child. Figure 4 similarly shows that 

the distributions of paternal labor market outcomes and income are generally smooth across the 

VLBW cutoff. However, the fathers of VLBW newborns do not seem to experience the mental 

health improvements enjoyed by the mothers. The corresponding regression results reported in 

Columns 3-4 of Tables 2-3 confirm the visual evidence. We generally do not find significant 

discontinuities at the VLBW cutoff in the measures of family resources (parental labor market 

outcomes and income). In the few cases when we find marginally significant gains, the results do 

not survive the adjustment for multiple inference: the lowest q-value is 0.213. However, we do 

find evidence of improved maternal mental health soon after the birth of the focal child that 

dissipates as the child ages. In particular, our results indicate that antidepressant use by the mothers 

of VLBW newborns is on average 0.347 standard deviations lower. Consistent with the visual 

evidence in Figure 4, we find no evidence of a similar effect for the fathers.  

5.3. Robustness Checks 

In this section we present robustness checks for the indices that were statistically significant in the 

baseline regressions and that survived the adjustment for multiple inference: focal child mortality, 

focal child long-term health, focal child test scores, sibling test scores, and maternal short-term 

health (Appendix Figures A6-A8 and A10-12, and Appendix Table A5 provide the corresponding 

checks for the remaining indices). Appendix Figure A5 and Column 1 of Appendix Table A4 

investigate the robustness of our estimates to the choice of bandwidth. Appendix Figure A5 

presents the results for all bandwidths between 100-300 grams in 10-gram steps. Our baseline 

effect is indicated with a square and the vertical bars plot the corresponding 95% robust confidence 

 
18 Among the test-takers in the sibling sample, the maximum age difference between older siblings and focal children 
is 7.6 years, meaning that none of the older siblings take the test before the focal children are born. 
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interval following Calonico et al. (2014, 2019). The Figure shows that the magnitudes of the 

estimates are remarkably consistent across different bandwidths. In Column 1, we allow the 

bandwidths to differ across outcomes using the optimal bandwidths suggested by the Calonico et 

al. (2014) strategy. Given the stability of the estimates to alternative bandwidths, it is not surprising 

that the results are again very robust. 

We next check the sensitivity of our results to the choice of degree of polynomial in birth weight. 

The results in Column 2 show that our findings are robust to using a second degree of polynomial. 

Column 3 investigates the sensitivity of the results to the inclusion of the control variables 

described in Section 4. If the key assumption in our RD design is satisfied (i.e., birth weight is as 

good as random around the cutoff), then including additional relevant covariates should not impact 

the estimates much but increase precision instead. The results show that this is generally the case.  

Columns 4-5 turn to the role of heaping. Heaping can lead to biased estimates if it does not occur 

in a symmetric way around the cutoff. Following Barreca et al. (2011, 2016), our main 

specification controls for heaping at 50-gram intervals. We conduct two checks to probe this 

further. First, we estimate models excluding the heaping dummies (Column 4). Second, in Column 

5 we estimate “donut” regressions that exclude the (family members of) focal children who 

weighed 1,500 grams (Barreca et al., 2016). The results are again similar to the main estimates, 

suggesting that our baseline results are not driven by heaping.  

Our baseline model uses a triangular kernel. In Column 6, we show that our findings are robust to 

using a rectangular kernel that places equal weights to each observation. Column 7 checks the 

sensitivity of our inference by clustering standard errors at the birth weight level and confirms that 

the results remain statistically significant at conventional levels.  

Finally, we conduct two falsification tests. First, we estimate our baseline model in the sample of 

(family members of) focal children with a gestational age of less than 32 weeks. Since these 

children are eligible to receive additional medical treatments regardless of their birth weight, any 

discontinuity in their outcomes or in the outcomes of their family members would suggest a 

violation of the key identification assumptions underlying the RD design. The results in Column 

8 indicate that the indices studied are relatively smooth across the VLBW threshold in this sample.  

Second, we check whether we observe similar discontinuities in the indices at other points in the 

distribution of birth weight of the focal child. If the observed gains are indeed driven by the medical 
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treatments received by focal children, then we should not observe systematic discontinuities in the 

outcomes at other potential cutoffs. We examine cutoffs from 1,300 grams to 3,100 grams, keeping 

the bandwidth fixed at 200 grams. The results presented in Appendix Figure A9 indicate that the 

discontinuities observed at 1,500 grams are indeed distinct. Although the effects at 1,300 grams 

are more noisily estimated, it is clear in most figures that the largest and only significant 

discontinuity is found at 1,500 grams.19 Overall, these findings strongly suggest that the observed 

(spillover) effects are due to the impact of medical treatments provided to the VLBW focal 

children. 

5.4 Discussion 

In the first part of our paper, we confirm the findings in the previous literature that early-life 

medical treatments have significant effects on focal child survival and academic achievement. In 

order to compare our findings with the previous literature, we present the results using selected 

components of the mortality and the test-score indices in Appendix Table A6. We show that the 

probability of death within the first 28 days (1 year) of life is 4.1 (5.4) percentage points lower 

among VLBW newborns. These are large gains when compared to the average mortality rates of 

those above the cutoff (6.2 and 7.7 percent, respectively) but they are comparable in magnitude to 

the reductions in infant mortality from previous studies: 1 percentage point (mean: 5.5 percent) in 

the US (Almond et al., 2010); 4.5 percentage points (mean: 11 percent) in Chile and 3.1 percentage 

points (mean: 3.6 percent) in Norway (Bharadwaj et al., 2013). We find that VLBW newborns 

have language and math test scores higher on average by 0.229 and 0.315 standard deviations, 

respectively.20 The estimated effect on math test scores is comparable to those found by Bharadwaj 

et al. (2013), who estimate effects of 0.152 standard deviations in Chile and 0.476 standard 

deviations in Norway. We add to this literature by investigating effects on focal child human 

capital accumulation beyond compulsory schooling as well as disability and hospital/ER contacts. 

We do not find effects on enrollment beyond compulsory schooling. Further analyses based on 

individual components of the index shows that there is also no impact on the “intensive” margin, 

 
19 In the case of focal child and sibling test scores, we also find marginally significant discontinuities at 2,500 grams, 
which is another birth weight cutoff for specialized medical treatments. These effects are three to four times smaller 
than the estimated effects at 1,500 grams. 
20 These results are not driven by delayed school entry as proxied by the age at which focal children take the 9th grade 
test (Landersø et al., 2017). Indeed, we find that the distribution of the age when focal children take the test is smooth 
across the VLBW threshold (estimate -0.033, b.c.e. -0.115, s.e. 0.127, mean 16.137). 
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as the share of focal children enrolled in an academic track at age 18 is not significantly higher 

among VLBW children (see Appendix Table A6). In order to reconcile the test score gains with 

the lack of effects on enrollment, we estimate a quantile RD specification based on the method 

proposed by Frandsen et al. (2012). The results presented in Appendix Table A9 indicate that 

early-life medical treatments do not improve the test scores of the focal children at the bottom of 

the test score distribution. This suggests that the children affected by the medical treatments are 

not on the margin of dropping out or of making the choice between an academic or a vocational 

track. While we also do not find any effects on focal child disability status, our results consistently 

point to health improvements during school years, highlighting a potential channel behind the 

academic achievement results.21  

The main novelty in our paper is the investigation of spillover effects to other family members. 

Our results suggest that early-life medical interventions have little impact on parents’ decisions 

that affect total household resources, as we see no discontinuity in the labor market or income 

indices of either mothers or father. Since Denmark is a developed country with a particularly 

generous social safety net, this is maybe not surprising. We do, however, find evidence that early-

life treatments provided to VLBW children improve maternal mental health. The mental health 

gains are short-lived and tend to dissipate as focal children age. One natural explanation for this 

pattern could be improved focal child survival. We check whether this is the case in two ways. 

First, we estimate our baseline model in the sample of family members of focal children who 

survive past the first year of life. The estimated effect shown in Column 1 of Appendix Table A10 

is smaller than our baseline estimate, suggesting that child survival is indeed a channel through 

which early-life medical treatments may affect maternal mental health. Second, we consider 

several groups of focal children whom we expect to be affected differently by early-life medical 

interventions. For example, twins are on average lighter than singletons, meaning that a VLBW 

singleton may be in poorer health than a VLBW twin. Therefore, we would expect the VLBW 

singletons in our sample to benefit more from medical treatments than twins. In addition, there is 

a large medical literature on the “fragile male” hypothesis, which states that the male fetus is 

simply more at risk than the female fetus (Naeye et al., 1971). Hence, we would expect that the 

 
21 In order to shed some light on this, we estimate our baseline model with the focal child test score index as the 
outcome while additionally controlling for focal child long-term health index. The estimated coefficient of the VLBW 
variable in this case is 0.260 (b.c.e. 0.496, s.e. 0.233).  
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VLBW boys in our sample benefit more than girls from the additional treatments provided to 

VLBW children. Indeed, Columns 2-5 in Appendix Table A10 indicate that our mortality results 

are driven by singletons and by boys. However, there are long-term improvements in health across 

all four groups, supporting our earlier conclusion that early-life medical treatments have health 

benefits beyond just survival. More importantly, the Table shows large improvements in the mental 

health of the mothers of focal children with no survival benefits (twins and girls). This suggests 

that general improvements in the health of focal children, and not just their survival, is a channel 

behind the spillover effects on maternal mental health. 

Turning to siblings, we find that early-life medical interventions have economically significant 

long-run gains in sibling academic achievement. The results based on course-specific test scores 

presented in Appendix Table A8 show that the test score gains are driven by both math and 

language test scores. Siblings of VLBW newborns have on average 0.386 (0.255) standard 

deviations higher language (math) test scores relative to the siblings of newborn who weigh 

slightly more than 1,500 grams. One way to gauge the magnitudes of these effects is to compare 

it to other policy-relevant test score gaps. For example, among all children born during the period 

covered by our sibling sample, the difference in language (math) scores between the children of 

non-immigrants and immigrants is 0.264 (0.404) standard deviations. Our results imply that 

medical interventions are equivalent to eliminating the language disadvantage for children of 

immigrants and reducing the gap in math scores by more than half. We also calculate that the 

difference in language (math) test scores among those born in households above the 90th income 

percentile and those born in households below the 10th income percentile is 0.557 (0.769) standard 

deviations. Our coefficients imply that medical interventions can reduce the income-based test 

score gap at age 16 by 33-69%. These effects are in line with those found by Duncan and Sojourner 

(2003) for income-based test score gaps at ages 3 through 8 for children exposed to an early-

education program targeting low-birth-weight children in the US. 

Similar to the focal child results, we find that siblings’ test score gains do not translate into a higher 

likelihood of pursuing education beyond the compulsory level. In contrast to the effects on focal 

children, however, the results from the quantile RD approach indicate that early-life medical 

treatments improve the test scores of siblings across the entire test score distribution (see Appendix 

Table A9). This seems to still not affect the children on the margin of dropping out, likely due to 

the fact that only 22% of students do not continue beyond compulsory schooling. However, as 
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more students from the lower half of the test score distribution see improvements in their academic 

achievement, we now find effects at the “intensive” margin: siblings of VLBW children are more 

likely to follow an academic track instead of a vocational track (see Appendix Table A8).  

These positive spillovers on academic achievement are unlikely to be driven by correlated health 

shocks within the family that make siblings themselves more likely to receive medical 

interventions early in life. The fact that we do not observe discontinuities in the hospital/ER visits 

of siblings at the cutoff offers the first evidence that this is unlikely to be the case. We conduct two 

more checks to shed more light on this issue. First, we exclude VLBW siblings and confirm that 

our main results are not driven by them.22 Second, if the families of VLBW focal children are more 

prone to having health shocks than the families of slightly heavier children, then our human capital 

achievement results may capture the effects of these unobserved family traits instead of the 

spillovers from early-life medical interventions. In that case, we may expect to see differences 

across the VLBW cutoff in the short-term survival rates of older siblings before being exposed to 

the VLBW focal children. Using the 28-day and 1-year mortality rate of older siblings as outcomes 

suggests that this is not a concern in our context.23 The sibling spillovers are also not driven by 

differential focal child survival at the cutoff. In contrast to mother’s mental health, we find similar 

improvements in sibling test scores to our baseline results when we estimate the baseline model in 

the sample of families where focal children survive the first year (Column 1 Appendix Table A10). 

The fact that we observe significant test score gains among siblings of VLBW children without 

effects on total household resources or sibling health suggests that early-life medical treatments 

may be changing intra-family interactions or the intra-household allocation of resources. Data 

limitations do not allow us to investigate these hypotheses directly, but we provide indirect 

evidence on both. It is well understood in economics that the family, especially parent-child 

interactions, plays a central role in the human capital accumulation of children (Cunha and 

Heckman, 2007; Cunha et al., 2010; Almond and Currie, 2011). In order to further shed light on 

this, we estimate our baseline model while controlling for the maternal short-term mental health 

 
22 The estimated coefficient of the VLBW variable is 0.401 (b.c.e. 0.466, s.e. 0.205, N=1,456) for the language test 
score and 0.263 (b.c.e. 0.416, s.e. 0.183, N=1,465) for the math test score. After excluding VLBW siblings, only 10 
siblings with a gestational age below 32 weeks remain in the sample. Further dropping these from the sample does not 
change the results.  
23 The estimated coefficient of the VLBW variable is 0.016 (b.c.e. 0.027, s.e. 0.020, N = 3,594) for 28-day mortality 
and 0.021 (b.c.e. 0.031, s.e. 0.022, N = 3,594) for 1-year mortality. 
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index and find that this reduces the estimated effect on sibling text scores by about 50%.24 This 

suggests that improved parent-child relations may be important for sibling academic achievement. 

The existing research also indicates that children’s early-life health endowments impact the 

academic outcomes of other children in the family by changing parental investments. Evidence of 

such spillover effects are found both in developing and in developed countries and the magnitudes 

of the effects are economically large (Yi et al., 2015; Black et al., 2017). We can provide some 

indirect evidence on this if we make the assumption that there are dynamic complementarities in 

the production of human capital, as suggested by Cunha and Heckman (2007). In this case, children 

with high initial endowments would benefit most from parental investments because “skills beget 

skills.” To illustrate, consider two children with low initial endowment, A and B, who are identical 

in every respect except that A has a sibling with birth weight slightly below the VLBW cutoff 

while B has a sibling with birth weight slightly above the cutoff. If both sets of parents engage in 

compensating behavior, then child B has more resources taken away from her and allocated to her 

sibling than child A does (because the VLBW sibling of child A benefits from the additional 

medical treatments). Therefore, in the long-term child B ends up with a lower level of skills than 

child A. Now consider a similar pair of identical children, C (who has a VLBW sibling) and D 

(who does not), but with high initial endowment. Just as before, child D has more resources taken 

away from her and so she ends up with a lower level of skills in the long term than child C. 

However, because of dynamic complementarities, child D is harmed even more by the fewer 

resources she receives because the return to those resources would be higher for her than for child 

B. Therefore, the difference in skills between children C and D (high initial endowment) is larger 

than the difference in skills between children A and B (low ability).25 

To check whether we observe this pattern in our data, we rely on birth weight as an indicator of 

initial endowments because the previous literature finds that it is highly correlated with later-life 

academic, health, and labor market outcomes (e.g., Black et al., 2007; Figlio et al., 2014). We 

define “high endowment” siblings as those whose birth weight is higher than the birth weight of 

the median child born during our sample period. The results, shown in Appendix Table A11, 

 
24 The estimated coefficient of the VLBW variable is 0.182 (b.c.e. 0.437, s.e. 0.250, N = 546).  
25 Alternatively, the difference in skills between children C and D can be larger than the difference in skills between 
children A and B if parents reallocate more resources to the focal child in order to compensate for the larger difference 
in endowments within the family. This explanation is also consistent with compensating behavior by the parents. 



 20 

suggest that high-endowment siblings benefit more than low-endowment siblings from the 

additional medical treatments received by VLBW focal children. This suggests that parental 

compensating behavior (possibly combined with dynamic complementarities in the production of 

human capital) may also be one of the factors behind the observed spillover effects. 

6. Conclusions 

This article investigates the spillover effects of early-life medical treatments provided to VLBW 

children on other family members. Using register data from Denmark, we confirm the findings in 

the previous literature that VLBW children eligible to receive early-life treatments are less likely 

to die in the first year of life and have higher academic achievement in 9th grade. We add to this 

literature by showing that focal children’s likelihood of having a childhood disability is not 

impacted by early-life medical treatments, but they are still more likely to enjoy better health 

during school years, as proxied by reduced hospital/ER contacts.  

The main innovation in our study is that we document the presence of spillover effects to other 

family members. While total household resources do not differ between the families of VLBW 

children and the families of slightly heavier newborns, the mothers of VLBW children are 

significantly less likely to consume antidepressants soon after the birth of the children. These 

health gains diminish as the focal child ages. Our results suggest that both increased focal child 

survival and improvements in focal child health contribute to the improvements in maternal mental 

health. Turning to siblings, we find that the siblings of focal children who were slightly below the 

VLBW cutoff have better 9th grade language and math test scores. These gains are not driven by 

correlated health shocks within the family or by differential focal child survival at the cutoff. 

Instead, we present evidence suggesting that improved interactions in the family and parental 

compensating behavior may be important reasons behind the spillovers to siblings. 

Our results underscore the importance of health interventions targeted to other family members as 

an important factor in the accumulation of human capital. Our findings also have important 

implications for understanding the efficacy of early-life medical interventions. In particular, they 

underline the need to consider potential externalities when assessing the net benefits of medical 

treatments. Finally, our results have implications for studies on the effects of early-life health 

endowments using sibling fixed-effects estimators. The fact that we find substantial positive 

spillovers on the siblings of treated children suggests that within-sibling comparisons of 
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achievement gains may underestimate the true impact of initial health endowments on later-life 

outcomes. 
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(a) Mortality 

 

 
(b) Short-term health 

 
(c) Longer-term health 

 

 
(d) Disability 

 
(e) Test scores 

 
(f) Higher education 

 
Notes: Sample of focal children with gestational age of at least 32 weeks. Each dot represents the average of the 
summary index indicated in the panel for a 40g bin. Focal children with birth weight of 1,500g are excluded. The lines 
plot a first-degree polynomial estimated separately on either side of the VLBW cutoff. 
 

Figure 1: Evolution of summary indices of focal children around the VLBW cutoff 
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(a) Short-term health 

 

 
(b) Long-term health 

 
(c) Test scores 

 
(d) Higher education 

 
Notes: Sample of siblings of focal children with gestational age of at least 32 weeks. Each dot represents the average 
of the summary index indicated in the panel for a 40g bin. Siblings of focal children with birth weight of 1,500g are 
excluded. The lines plot a first-degree polynomial estimated separately on either side of the VLBW cutoff. 
 

Figure 2: Evolution of summary indices of siblings around the VLBW cutoff, GA32+ sample 
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(a) Short-term health 

 

 
(b) Short-term labor market 

 
(c) Short-term income 

 

 
(d) Longer-term health 

 
(e) Longer-term labor market 

 
(f) Longer-term income 

 
Notes: Sample of mothers of focal children with gestational age of at least 32 weeks. Each dot represents the average 
of the summary index indicated in the panel for a 40g bin. Mothers of focal children with birth weight of 1,500g are 
excluded. The lines plot a first-degree polynomial estimated separately on either side of the VLBW cutoff. 
 

Figure 3: Evolution of summary indices of mothers of focal children around the VLBW cutoff 
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(b) Short-term labor market 

 
(c) Short-term income 

 

 
(d) Longer-term health 

 
(e) Longer-term labor market 

 
(f) Longer-term income 

 
Notes: Sample of fathers of focal children with gestational age of at least 32 weeks. Each dot represents the average 
of the summary index indicated in the panel for a 40g bin. Fathers of focal children with birth weight of 1,500g are 
excluded. The lines plot a first-degree polynomial estimated separately on either side of the VLBW cutoff. 
 

Figure 4: Evolution of summary indices of fathers of focal children around the VLBW cutoff 
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Table 1. Distribution of covariates across the VLBW cutoff  
Estimate Bias-

corrected 
estimate 

Robust 
standard 

error 

Sharpened 
q-value 

Mean of 
dependent 
variable 

  (1) (2) (3) (4) (5) 
A. Focal child characteristics (N = 2,156) 
Boy -0.028 [-0.079] (0.077) {0.919} 0.456 
Birth order 0.229 [0.166] (0.173) {0.919} 1.911 
Multiple birth 0.065 [0.092] (0.070) {0.851} 0.208 
Gestational age -0.353** [-0.508] (0.258) {0.576} 34.097 
Family size 0.054 [0.009] (0.160) {1.000} 2.937 
Has younger siblings -0.066 [-0.020] (0.078) {1.000} 0.611 
Number of younger siblings -0.189 [-0.205] (0.133) {0.713} 0.899 
B. Sibling characteristics (N = 3,311) 
Boy -0.003 [-0.033] (0.068) {1.000} 0.520 
Birth order -0.115 [-0.154] (0.147) {0.919} 2.121 
Multiple birth 0.026 [0.011] (0.017) {1.000} 0.023 
Gestational age -0.319 [-0.464] (0.449) {0.919} 38.209 
Birth weight -128.494* [-188.938] (105.751) {0.618} 2,898.7 
VLBW 0.012 [0.019] (0.033) {1.000} 0.046 
Age difference - older sibling -0.119 [-0.397] (0.782) {1.000} 6.586 
Age difference - younger sibling -0.400 [-0.691] (0.449) {0.713} 4.515 
 
C. Mother's characteristics at the birth of the focal child (N = 2,156)  
Age 1.118 [1.040] (0.800) {0.851} 27.735 
Education (years) -0.246 [0.218] (0.389) {1.000} 11.239 
Immigrant -0.021** [-0.052] (0.027) {0.576} 0.068 
Married 0.047 [0.003] (0.080) {1.000} 0.535 
D. Father's characteristics at the birth of the focal child (N = 2,116) 
Age 2.044** [2.132] (0.873) {0.507} 30.547 
Education (years) 0.172 [0.465] (0.400) {0.919} 11.608 
Immigrant 0.013 [-0.006] (0.039) {1.000} 0.074 
Not reported -0.008 [-0.004] (0.023) {1.000} 0.021 

Notes: Sample of (family members of) focal children with birth weight within a 200g bandwidth around the 1,500g cutoff 
and gestational age of at least 32 weeks. Column 1 reports the estimated coefficient of the VLBW variable from a separate 
local-linear regression with a triangular kernel of the characteristic listed in the row for the family member indicated in the 
panel heading. Column 2 reports the corresponding bias-corrected estimate, Column 3 the robust standard error (Calonico et 
al., 2014, 2019), Column 4 the sharpened q-value for the set of tests included in the Table (Anderson, 2008), and Column 5 
the mean of the variable in the row calculated among (family members of) focal children with birth weight above 1,500g. 
Stars indicate statistical significance (*** significant at 1%, ** at 5%, * at 10%) based on robust confidence intervals centered 
on the bias-corrected estimates (for details, see Calonico et al., 2014, 2019). 
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Table 2. Short-term effects of VLBW classification. 
 Focal child Siblings Mother Father 
 (1) (2) (3) (4) 
Mortality -0.508** --- --- --- 
 [-1.011]    
 (0.408)    
 {0.065}    
Mean outcome 0.726    
Observations 2,156    
     
Health 0.133 -0.049 -0.347*** -0.016 
 [0.161] [-0.041] [-0.338] [0.098] 
 (0.190) (0.142) (0.124) (0.173) 
 {0.415} {0.471} {0.052} {0.415} 
Mean outcome 0.190 0.103 0.042 0.023 
Observations 1,978 3,311 689 669 
     
Labor market outcomes --- --- 0.068 0.066 
   [0.211] [0.205] 
   (0.150) (0.156) 
   {0.293} {0.303} 
Mean outcome   -0.060 0.051 
Observations   2,143 2,099 
     
Income --- --- 0.109* 0.112* 
   [0.286] [0.289] 
   (0.153) (0.171) 
Mean outcome   {0.213} {0.239} 
Observations   -0.070 -0.048 
     2,144 2,100 

Notes: Sample of (family members of) focal children with birth weight within a 200g bandwidth around the 1,500g 
cutoff and gestational age of at least 32 weeks. Each cell reports the estimated coefficient of the VLBW variable from 
a separate local-linear regression with a triangular kernel of the summary index listed in the row for the family member 
indicated in the column (see Appendix Table A1 for details on the construction of the summary indices). All 
regressions control for heaping at multiples of 50g. Bias-corrected estimates are listed in square brackets, robust 
standard errors in brackets, and sharpened q-values in curly braces below the coefficient estimates. The mean of the 
outcome is reported for (family members of) focal children with birth weight above 1,500g. Stars indicate statistical 
significance (*** significant at 1%, ** at 5%, * at 10%) based on robust confidence intervals centered on the bias-
corrected estimates (for details, see Calonico et al., 2014, 2019). 
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Table 3. Long-term effects of VLBW classification. 
 Focal child Siblings Mother Father 
 (1) (2) (3) (4) 
Health -0.324*** 0.090 -0.168 0.233 
 [-0.437] [0.167] [-0.199] [0.427] 
 (0.144) (0.155) (0.122) (0.293) 
 {0.052} {0.332} {0.239} {0.293} 
Mean outcome 0.039 0.115 -0.011 -0.026 
Observations 1,960 3,311 2,155 2,116 
     
Disability diagnosis by age 10 0.234 --- --- --- 
 [0.246]    
 (0.294)    
 {0.415}    
Mean outcome 0.249    
Observations 2,156    
     
9th grade test scores 0.314** 0.375*** --- --- 
 [0.564] [0.524]   
 (0.234) (0.193)   
 {0.065} {0.052}   
Mean outcome -0.257 -0.216   
Observations 952 1,539   
     
Higher education 0.044 0.048 --- --- 
 [0.146] [0.086]   
 (0.180) (0.141)   
 {0.415} {0.415}   
Mean outcome -0.380 -0.211   
Observations 2,156 2,759   
     
Labor market outcomes --- --- 0.093 0.080* 
   [0.098] [0.252] 
   (0.153) (0.152) 
   {0.415} {0.239} 
Mean outcome   -0.028 0.037 
Observations   2,124 2,074 
     
Income --- --- 0.076 0.095 
   [0.171] [0.214] 
   (0.139) (0.149) 
Mean outcome   {0.332} {0.293} 
Observations   -0.063 -0.068 

Notes: See the notes in Table 2.  


